首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
地质学   6篇
  2017年   2篇
  2014年   1篇
  2012年   1篇
  2006年   2篇
排序方式: 共有6条查询结果,搜索用时 31 毫秒
1
1.
This paper addresses the geochemistry of intrusive (Osinitsk complex) and volcanic (Klesov Group) rocks of the Osnitsk-Mikashevichy volcanoplutonic belt (OMVPB) of the Ukrainian shield, which is an active continental margin existing approximately 1980–2000 Ma ago. The Osnitsk complex comprises a wide range of rocks, from ultrabasics to granitoids, and the Klesov Group is dominated by extrusive rocks of basaltic and rhyolitic compositions metamorphosed under epidote-amphibolite facies conditions. The Sr-Nd-Hf isotopic systematics (?Sr1990 from ?4 to +10, ?Nd1990 from ?0.6 to +2.3, and ?Hf1990 from 0.1 to 1.4) indicates a juvenile source for the OMVPB rocks. Geochemical data suggest independent origin of the rocks of gabbroid (SiO2 < 60 wt %) and granitoid (SiO2 > 60 wt %) series. The gabbroids are subdivided into pre- and post-granite groups on the basis of the higher contents of incompatible trace elements and lower contents of compatible elements in the post-granite rocks. The geochemical characteristics of the two groups of basic rocks indicate their formation in a convergent tectonic setting. The origin of the granitoid melts is attributed to the low-degree (eutectoid) melting of basic rocks at relatively low temperatures.  相似文献   
2.
The rift system of the Dnieper–Donets trough (DDT) is the largest magmatic area in the East European Platform. Basalts of the Voronezh Crystalline Massif (VCM) are spatially constrained to the eastern shoulder of DDT and occur far away (at a distance of 150–200 km) from the rift axis. The rocks are hosted in the Paleoproterozoic Vorontsovskii terrane and are grouped in a few fields within an area of 200 × 100 km. Basalts at most of the fields were erupted at the boundary between mid- and late Frasnian time in the Late Devonian and can be studied exclusively in core material recovered by boreholes. Newly obtained mineralogical, geochemical, and isotopic-geochemical data show that the Devonian volcanic rocks in VCM are tholeiites (Bas) and basaltic andesites/andesites (ABas). The geological section was examined most exhaustively in the Novokhopersk area (Borehole 175). The bottom of the vertical section is made up of basaltic andesites and andesites (ABas) (thickness 34 m), which rest on an eroded surface of late Frasnian sandstones. The rocks are overlain by a thin (8 m thick) tholeiite sheet (Bas2), which gives way to ABas (13 m) upsection. The top portion of the vertical section is composed of tholeiites with petrography and geochemical evidence of crustal contamination (Bas1) (apparent thickness 5 m). Geochemical parameters of Bas (mg# 42–52 at SiO2 47–51 wt %) are typical of continental tholeiites. The rocks have (87Sr/86Sr)0 = 0.7043–0.7048 and εNd(372) = 2.1–3.5. ABas (mg# 28–31 at SiO2 52–60 wt %) are enriched in Y (48 ppm), and possess Nb/Nb* = 0.7–0.8 and high Zn/Cu = 1.9–2.3. The rocks have (87Sr/86Sr)0 = 0.7034–0.7048 and Nd–εNd(372) = 0.1. Some portions of Bas melts assimilated the upper crustal material, which was similar to Paleoproterozoic granites, and ABas are contaminated in the lower crust with derivatives of Early Cambrian alkaline mafic melts. Petrographic data and simulations of fractional crystallization show that olivine and high-Mg clinopyroxene were the first to crystallize from the melt. After this, clinopyroxene and plagioclase simultaneously crystallized at temperatures from 1070 to 1020°C in Bas and at 1040–900°C at f O2 below QFM + 1 in ABas. The source of ABas was likely a network of hornblendite or amphibole pyroxenite veins in peridotite in the lithospheric mantle or amphibolized peridotite cumulate in an underplating zone; and Bas were derived from spinel peridotites of an asthenospheric diapir. The setting of the basalts relative to the DDT axis and the asymmetric zoning of magmatism in DDT (with kimberlites and other deep rocks constrained to the western shoulder and tholeiites occurring in the axial part of the rift and its eastern shoulder) can be explained by the model of an asymmetric rift structure with a translithospheric detachment gently dipping beneath VCM.  相似文献   
3.
This study documents the petrography and whole-rock major and trace element geochemistry of 38 samples mainly from a drill core through the entire Fedorivka layered intrusion (Korosten Pluton), as well as mineral compositions (microprobe analyses and separated mineral fraction analyses of plagioclase, ilmenite, magnetite and apatite) of 10 samples. The Fedorivka layered intrusion can be divided into 4 lithostratigraphic units: a Lower Zone (LZ, 72 m thick), a Main Zone (MZ, 160 m thick), and an Upper Border Zone, itself subdivided into 2 sub-zones (UBZ2, 40 m thick; UBZ1, 50 m thick). Igneous lamination defines the cumulate texture, but primary cumulus minerals have been affected by trapped liquid crystallization and subsolidus recrystallization. The dominant cumulus assemblage in MZ and UBZ2 is andesine (An39–42), iron-rich olivine (Fo32–42), augite (En29–35Fs24–29Wo42–44), ilmenite (Hem1–6), Ti-magnetite (Usp52–78), and apatite. The data reveal a continuous evolution from the floor of the intrusion (LZ) to the top of MZ, due to fractional crystallization, and an inverse evolution in UBZ, resulting from crystallization downwards from the roof. The whole-rock Fe/Mg ratio and incompatible element contents (e.g. Rb, Nb, Zr, REE) increase in the fractionating magma, whereas compatible elements (e.g. V, Cr) steadily decrease. The intercumulus melt remained trapped in the UBZ cumulates due to rapid cooling and lack of compaction, and cumulus mineral compositions re-equilibrated (e.g. olivine, Fe–Ti oxides). In LZ, the intercumulus melt was able to partially or totally escape. The major element composition of the MZ cumulates can be approximated by a mixing (linear) relationship between a plagioclase pole and a mafic pole, the latter being made up of all mafic minerals in (nearly) constant relative proportions. By analogy with the ferrobasaltic/jotunitic liquid line of descent, defined in Rogaland, S. Norway, and its conjugated cumulates occurring in the Transition Zone of the Bjerkreim-Sokndal intrusion (Rogaland, a monzonitic (57% SiO2) melt is inferred to be in equilibrium with the MZ cumulates. The conjugated cumulate composition falls (within error) on the locus of cotectic compositions fixed by the 2-pole linear relationship. Ulvöspinel is the only Ti phase in some magnetites that have been protected from oxidation. QUIlF equilibria in these samples show that magnetite and olivine in MZ have retained their liquidus compositions during subsolidus cooling. This permits calculation of liquidus fO2 conditions, which vary during fractionation from ΔFMQ = 0.7 to − 1.4 log units. Low fO2 values are also evidenced by the late appearance of cumulus magnetite (Fo42) and the high V3+-content of the melt, reflected in the high V-content of the first liquidus magnetite (up to 1.85% V).  相似文献   
4.
The Korosten complex is a Paleoproterozoic gabbro–anorthosite–rapakivi granite intrusion which was emplaced over a protracted time interval — 1800–1737 Ma. The complex occupies an area of about 12 000 km2 in the north-western region of the Ukrainian shield. About 18% of this area is occupied by various mafic rocks (gabbro, leucogabbro, anorthosite) that comprise five rock suites: early anorthositic A1 (1800–1780 Ma), main anorthositic A2 (1760 Ma), early gabbroic G3 (between 1760 and 1758 Ma), late gabbroic G4 (1758 Ma), and a suite of dykes D5 (before 1737 Ma). In order to examine the relationships between the various intrusions and to assess possible magmatic sources, Nd and Sr isotopic composition in mafic whole-rock samples were measured. New Sr and Nd isotope measurements combined with literature data for the mafic rocks of the Korosten complex are consistent and enable construction of Rb–Sr and Sm–Nd isochronous regressions that yield the following ages: 1870 ± 310 Ma (Rb–Sr) and 1721 ± 90 Ma (Sm–Nd). These ages are in agreement with those obtained by the U–Pb method on zircons and indicate that both Rb–Sr and Sm–Nd systems have remained closed since the time of crystallisation. In detail, however, measurable differences in isotopic composition of the Korosten mafic rock depending on their suite affiliation were revealed. The oldest, A1 rocks have lower Sr (87Sr/86Sr(1760) = 0.70233–0.70288) and higher Nd (εNd(1760) = 1.6–0.9) isotopic composition. The most widespread A2 anorthosite and leucogabbro display higher Sr and lower Nd isotopic composition: 87Sr/86Sr(1760) = 0.70362, εNd(1760) varies from 0.2 to − 0.7. The G3 gabbro–norite has slightly lower εNd(1760) varying from − 0.7 to − 0.9. Finally, G4 gabbroic rocks show relatively high initial 87Sr/86Sr (0.70334–0.70336) and the lowest Nd isotopic composition (εNd(1760) varies from − 0.8 to − 1.4) of any of the mafic rocks of the Korosten complex studied to date. On the basis of Sr and Nd isotopic composition we conclude that Korosten initial melts may have inherited their Nd and Sr isotopic characteristics from the lower crust created during the 2.05–1.95 Ga Osnitsk orogeny and 2.0 Ga continental flood basalt event. Indeed, εNd(1760) values in Osnitsk rocks vary from 0.0 to − 1.9 and from 0.2 to 3.4 in flood basalts. We suggest that these rocks being drawn into the upper mantle might melt and give rise to the Korosten initial melts. 87Sr/86Sr(1760) values also support this interpretation. We suggest that the Sr and Nd isotopic data currently available on mafic rocks of the Korosten complex are consistent with an origin of its primary melts by partial melting of lower crustal material due to downthrusting of the lower crust into upper mantle forced by Paleoproterozoic amalgamation of Sarmatia and Fennoscandia.  相似文献   
5.
6.
Mineralogy and Petrology - The concentrations of 26 trace elements have been determined by laser ablation ICP-MS in zircons from four samples of basic rocks of the Korosten...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号