首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  免费   0篇
地球物理   1篇
地质学   37篇
  2020年   1篇
  2018年   1篇
  2017年   2篇
  2016年   6篇
  2015年   1篇
  2013年   4篇
  2012年   3篇
  2011年   3篇
  2009年   1篇
  2008年   5篇
  2007年   4篇
  2006年   6篇
  1999年   1篇
排序方式: 共有38条查询结果,搜索用时 31 毫秒
1.
2.
At the Yegor’evsk phosphorite deposit, the beds lie horizontally, although peculiar folds are observable locally. Close to the present-day and Neogene river valleys, the phosphorite-bearing succession and the Lower Cretaceous beds acquire an appreciable tilt toward the river valley floor. Folds occur only in those places where the river valley downcuts Oxfordian clay to a considerable depth (down to 10 m or deeper). In such cases, the plastic clay is squeezed out under the load of overlying sediments into the valley wall and is removed with water. The overlying beds subside as a strip parallel to the river valley and make up a border that is folded down.  相似文献   
3.
First systematic data on the variations of εNd(T) in the Neoproterozoic sedimentary sequence of the Baikal–Patom fold belt (Northern Transbaikalia) are reported. The range of obtained εNd(T) is–19.4…–2.0. It was established that the rocks of the Ballaganach and most part of the Dal’nyaya Taiga groups are characterized by εNd(T) from–19.4 to–16.3. Upsection, beginning from the Khomolkha Formation, the rocks show a sharp change in the initial Nd isotope composition (εNd(T)–8.3…–2.0). The results of Sm-Nd study of metasedimentary rocks of the BPB, as well as the comparison of their Sm-Nd characteristics with those of the inferred source areas suggest that the input of terrigenous material at the early stage of sedimentation in the Baikal–Patom belt was mainly related to the destruction of the Early Proterozoic crust of the Siberian craton. Owing to a change of sedimentation setting from passive continental margin to the “foreland” basin at the late stage, the terrigenous material of the Siberian craton was diluted by clastics from juvenile Neoproterozoic crust of the Baikal–Muya belt.  相似文献   
4.
The crystallization age of Zhaunkar granites (829 ± 10 Ma) was determined by U–Pb zircon dating. Taking into account the data obtained earlier on the granite age (791 ± 7 Ma) in the Aktas Complex and the syenite age (673 ± 2 Ma) in the Karsakpai Complex, the Ulutau sialic massif is assumed to be composed of three igneous complexes formed during the Tonian–Cryogenian periods of the Neoproterozoic.  相似文献   
5.
This paper reports on isotope-geochronologic, petrologic, and isotope-geochemical (Sr-Nd) studies of Quaternary magmatism in the Geghama neovolcanic area, Armenia, Lesser Caucasus. According to these studies, the period of youngest volcanic activity in the region lasted about 700 000 years, from 700 ka to a few tens of thousands of years ago. We found the time limits of five discrete phases of Quaternary volcanism: I (about 700 ka), II (550?480 ka), III (190?150 ka), IV (110?70 ka), and V (later than 50 ka). These phases seem to have lasted a few tens of thousands of years and were separated by quiescent periods of comparable durations. The petrologic and isotope-geochemical characteristics of Geghama effusive rocks show that they belong to the bimodal association rhyolite-trachyandesite and basaltic trachyandesite; this association was largely generated by fractional crystallization of primary basite melts, with the assimilation of crustal material by deep magmas being much less important. The isotopic parameters of the volcanic rocks studied here (0.70410–0.70437 for 87Sr/86Sr and +3.3 to +4.0 for ?Nd) are practically identical for intermediate to basic and acid varieties in this association and are similar to those for young basites in the other areas of the Lesser Caucasus; this circumstance indicates a common origin for all Quaternary magmatic formations in the region. The petrogenesis of these varieties probably involved a single mantle source of the OIB type with certain regional peculiarities in the composition of the melts it generated. An analysis of the locations of Quaternary volcanoes in central Armenia (Geghama and Aragats areas) and in the Kars plateau, which is adjacent to it in the west, provided evidence of an eastward lateral migration of youngest magmatic activity in the region over time. The latest episodes of this migration took place in the eastern Geghama area, which must be the first to produce eruptions in the future.  相似文献   
6.
Studies of the fourth bed of the Belousovskoe pyrite-polymetallic deposit (Ore Altai) revealed geochemical zonation across the thickness of the ore zone. The Lower ore body is composed of lead-zinc ores, whereas copper-zinc and zinc-copper ores dominate in the Upper ore body. The analogous zonation was previously found in the fifth bed of the Belousovskoe deposit.  相似文献   
7.
The basement of the Zheltav sialic massif (Southern Kazakhstan) is composed of different metamorphic rocks united into the Anrakhai Complex. In the southeastern part of the massif, these rocks form a large antiform with the core represented by amphibole and clinopyroxene gneissic granite varieties. By their chemical composition, dominant amphibole (hastingsite) gneissic granites correspond to subalkaline granites, while their petroand geochemical properties make them close to A-type granites. The U–Pb geochronological study of accessory zircons yielded an age of 1841 ± 6 Ma, which corresponds to the crystallization age of melts parental for protoliths of amphibole gneissic granites of the Zheltav Massif. Thus, the structural–geological and geochronological data make it possible to define the Paleoproterozoic (Staterian) stage of anorogenic magmatism in the Precambrian history of the Zheltav Massif. The combined Sm–Nd isotopic—geochronological data and age estimates obtained for detrital zircons indicate the significant role of the Paleoproterozoic tectono-magmatic stage in the formation of the Precambrian continental crust of sialic massifs in Kazakhstan and northern Tien Shan.  相似文献   
8.
A comprehensive study of the Lower Palaeozoic complexes of the Kokchetav Massif and its fringing has been carried out. It has allowed for the first time to discover and investigate in detail the stratified and intrusive complexes of the Cambrian–Early Ordovician. Fossil findings and isotope geochronology permitted the determination of their ages. The tectonic position and internal structures of those complexes have also been defined and their chemical features have been analyzed as well. The obtained data allowed us to put forward a model of the geodynamic evolution of Northern Kazakhstan in the Late Ediacaran–Earliest Ordovician. The accumulation of the oldest Ediacaran to Earliest Cambrian siliciclastics and carbonates confined to the Kokchetav Massif and its fringing occurred in a shallow shelf environment prior to its collision with the Neoproterozoic Daut island arc: complexes of the latter have been found in the northeast of the studied area. The Early Cambrian subduction of the Kokchetav Massif under the Daut island arc, their following collision and exhumation of HP complexes led to the formation of rugged ground topography, promoting deposition of siliceous–clastic and coarse clastic units during the Middle to early Late Cambrian. Those sediments were mainly sourced from eroded metamorphic complexes of the Kokchetav Massif basement. At the end of the Late Cambrian to the Early Ordovician within the boundaries of the massif with the Precambrian crust, volcanogenic and volcano-sedimentary units along with gabbros and granites with intraplate affinities were formed. Simultaneously in the surrounding zones, which represent relics of basins with oceanic crust, N-MORB- and E-MORB-type ophiolites were developed. These complexes originated under extensional settings occurred in the majority of the Caledonides of Kazakhstan and Northern Tian Shan. In the Early Floian Stage (Early Ordovician) older heterogeneous complexes were overlain by relatively monotonous siliceous–clastic units, that were being deposited until the Middle Darrivilian Stage (Middle Ordovician).  相似文献   
9.
Doklady Earth Sciences - Within the Kokchetav massif (Northern Kazakhstan), Mesoproterozoic granites and acid volcanics are widespread: these are the youngest Precambrian igneous rocks forming...  相似文献   
10.
This work presents isotope Sm-Nd data obtained for bulk samples of granites of all 8 emplacement phases of the Raumid granite massif, which occurred 35 Ma ago at a hypabyssal depth during the orogenic stage of development of Southern Pamir fold system. The 147Sm/144Nd ratio in studied collection of granite samples ranges between 0.091 and 0.323; the εNd(T) value is–4.0. The Sm-Nd isotope study results suggest that all granite varieties distinguished in the Raumid massif are comagmatic formations and contamination and hybridization processes did not play any role in REE distribution in granites. At this, the source of parental magma did not change during granite generation. We assume that the only process, resulted in the trace element evolution in granites, was differentiation of three batches of magma sequentially uplifted from the source.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号