首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
测绘学   1篇
大气科学   2篇
地质学   1篇
海洋学   6篇
  2018年   1篇
  2017年   2篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2006年   1篇
  2004年   2篇
  2003年   1篇
排序方式: 共有10条查询结果,搜索用时 31 毫秒
1
1.
Deep seawater in the ocean contains a great deal of nutrients. Stommel et al. have proposed the notion of a “perpetual salt fountain” (Stommel et al., 1956). They noted the possibility of a permanent upwelling of deep seawater with no additional external energy source. If we can cause deep seawater to upwell extensively, we can achieve an ocean farm. We have succeeded in measuring the upwelling velocity by an experiment in the Mariana Trench area using a special measurement system. A 0.3 m diameter, 280 m long soft pipe made of PVC sheet was used in the experiment. The measured data, a verification experiment, and numerical simulation results, gave an estimate of upwelling velocity of 212 m/day. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
2.
Radiative Heat Transfer and Hydrostatic Stability in Nocturnal Fog   总被引:1,自引:0,他引:1  
We have performed a one-dimensional and transient radiative heat transfer analysis in order to investigate interaction between atmospheric radiation and convective instability within a nocturnal fog. The radiation element method using the Ray Emission Model (REM2), which is a generalized numerical method, in conjunction with a line-by-line (LBL) method, is employed to attain high spectral resolution calculations for anisotropically scattering fog. The results show that the convective instability has a strong dependence on radiative properties of the fog. For the condition of a 20-m droplet diameter and liquid water content of 0.1 × 10–3 kg m–3;, the temperature profile within the fog becomes S shaped, and a convective instability layer forms in the middle or lower level of the fog. However, for the same water content and a 40-m diameter droplet, no strong convective instability layer forms, whereas for a 10-m diameter droplet a strong convective instability is observed.  相似文献   
3.
Volatile organic iodine compounds (VOIs) emitted from the ocean surface to the air play an important role in atmospheric chemistry. Shipboard observations were conducted in Funka Bay, Hokkaido, Japan, bimonthly or monthly from March 2012 to December 2014, to elucidate the seasonal variations of VOI concentrations in seawater and their sea-to-air iodine fluxes. The bay water exchanges with the open ocean water of the North Pacific twice a year (early spring and autumn). Vertical profiles of CH2I2, CH2ClI, CH3I, and C2H5I concentrations in the bay water were measured bimonthly or monthly within an identified water mass. The VOI concentrations began to increase after early April at the end of the diatom spring bloom, and represented substantial peaks in June or July. The temporal variation of the C2H5I profile, which showed a distinct peak in the bottom layer from April to July, was similar to the PO4 3? variation profile. Correlation between C2H5I and PO4 3? concentrations (r = 0.93) suggests that C2H5I production was associated with degradation of organic matter deposited on the bottom after the spring bloom. CH2I2 and CH2ClI concentrations increased substantially in the surface and subsurface layers (0–60 m) in June or July resulted in a clear seasonal variation of the sea-to-air iodine flux of the VOIs (high in summer or autumn and low in spring).  相似文献   
4.
During a cruise aboard the R/V Hakuho-maru in the northwestern North Pacific in the summer of 1998 the particle number concentrations and the major ionic components of size fractionated aerosols were measured to investigate the aerosol produced by marine biological activity. Continuous low concentrations of nitrate (<1.8 nmol m−3), similar to the marine air background level, were found over the northwestern North Pacific (40–45°N) and the Sea of Okhotsk (44–45°N). Over the Sea of Okhotsk, a high concentration of chlorophyll-a (5.4 mg m−3) in seawater was observed, and atmospheric concentrations of non sea-salt (nss-) sulfate (44 nmol m−3), methane sulfonic acid (MSA) (1.8 nmol m−3) and particle number in the size range of 0.1 < D < 0.5 μm (199 cm−3) were found to be 9, 7, and 2 times, respectively, higher than those in the background marine air. The increase in particle number concentrations mainly in the size range of 0.2 < D < 0.3 μm was likely caused by the increase of biogenic sulfate over the high productive region of the Sea of Okhotsk. In humid air conditions (R.H. > 96%), the increased biogenic sulfate that condensed the large amount of water vapor would not have sufficient solute mass to activate as cloud condensation nuclei (CNN) and would remain as aerosol particles in the marine air with frequent sea-fogs over the high productive region. Biogenic sulfate originating from dimethyl sulfide (DMS) would gradually grow into the CCN size and continuously supply a great number of CCN to the marine air in the northwestern North Pacific. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
5.
Safe disposal of wastes produced due to the process of decontamination in and around Fukushima No. 1 nuclear power plant is an urgent requirement. The purpose of this study was to develop a sealing material which can be used as an engineered barrier for a final disposal facility for the soils and wastes contaminated by radioactive cesium. The analyses conducted based on 4-m-thick sealing layer revealed that the hydraulic conductivity of the sealing material needs to be kept below 5.0?×?10?10?m/s to avoid the seepage of contaminants below the environmentally safe limits. Sealing material was developed using marine clay–bentonite mixture and the engineering characteristics were examined. The results of laboratory experiments showed that, with the addition of bentonite, the hydraulic conductivity equal to or less than 5.0?×?10?10?m/s was achieved when the effective consolidation stress is equal to or more than 27?kPa. From the tests for adsorption properties for cesium, it was found that the sealing material showed the significant capacity of adsorption for cesium in seawater. It was concluded that the construction of waste disposal facility on the sandy seafloor is feasible using the sealing layer proposed in this study.  相似文献   
6.
The objective of the research was to undertake a quantitative comparison of spectral-reflectance measurements made slightly above the surface of water bodies with the measurements made slightly below the surface. The study is focused on three rivers; two in Georgia, USA and one in Japan. As expected, the differences in reflectance are not constant and vary with the wavelength. The contribution of surface-reflection effects to the surface reflectance measured slightly above the water is both pronounced and highly variable, but although they do alter the magnitude of the upwelling signal, they do not change the general shape of the spectral profiles. The correction of surface-reflection effects by assuming a proportionality factor (ρ) is not considered to be efficient for inland fresh water bodies. For in situ spectroscopy, the recommended approach is to measure upwelling radiance slightly below the water's surface as a means of minimizing extraneous noise. Researchers should be aware of the potential for diminishing the validity of findings because of measurement errors.  相似文献   
7.
The mechanism of enhanced diffusivity occurring in the deep-sea perpetual salt fountain has been investigated experimentally and numerically. Some factors which possibly contribute to the enhanced diffusivity were found to be the pipe oscillation with ocean waves and its baffled wall surface. Field experiments in the ocean (Onagawa Bay of Miyagi, Japan) and numerical simulations were performed to study and confirm the dynamics of the flow and heat transport with enhanced diffusivity occurring in upwelling deep-sea water. The agreement between the field experimental data and the numerical solutions of an oscillating-wall boundary condition imposed on the baffled pipe is encouraging, and it indicates the baffled pipe surface subject to the oscillatory motion leads to the enhanced diffusivity. The buoyancy force and then upwelling velocity can be greatly increased by the enhanced diffusivity. The dominant mechanism is the occurrence of complicated vortices and vortex shedding leading to efficient mixing and enhanced diffusion.  相似文献   
8.
We studied the behavior of chemical substances in the upper 300 m of the water column across the continental shelf–slope interface in the East China Sea off the Okinawa Trough. The behaviors of iron, inorganic nutrients, and humic-like fluorescent dissolved organic matter were strongly influenced by the extensive water exchange between the East China Sea and the Kuroshio Current across the shelf break and slope via upwelling and frontal processes. We attributed the high humic-like fluorescent intensity at the subsurface of the shelf break and slope regions to the lateral supply of humic-like fluorescent dissolved organic matter from the shelf sediments to the outer shelf region due to the intrusion of shelf water into Kuroshio subsurface water. We found that the behavior of iron at the continental shelf–slope was remarkably different from the conservative mixing of inorganic nutrients and humic-like fluorescent dissolved organic matter. In deep and bottom waters at the shelf–slope, high total iron concentrations, which were closely related to water transmittance, possibly resulted from the swept transport of iron-rich resuspended sediments over the shelf floor from the slope by the invading Kuroshio Intermediate Water close to the bottom.  相似文献   
9.
10.
Shallow groundwater (>30 mbgl) is an essential source of drinking water to rural communities in the Ndop plain, northwest Cameroon. As a contribution to water management, the effect of seasonal variation on the groundwater chemistry, hydrochemical controls, drinking quality and recharge were investigated during the peaks of the dry (January) and rainy (September) seasons. Field measurements of physical parameters were preceded by sampling 58 groundwater samples during both seasons for major ions and stable isotope analyses. The groundwater, which was barely acidic (mean pH of 6) and less mineralised (TDS < 272 mg/l), showed no significant seasonal variation in temperature, pH and TDS during the two seasons. The order of cation abundance (meq/l) was Na+ > Ca2+ > Mg2+ > K+ and Na+ > Mg2+ > Ca2+ > K+ in the dry and rainy seasons, respectively, but that of anions ( \( {\text{HCO}}_{3}^{ - } \)  >  \( {\text{NO}}_{3}^{ - } \)  > Cl? >  \( {\text{SO}}_{4}^{2 - } \)  > F?) was similar in both seasons. This suggests a negligible effect of seasonal variations on groundwater chemistry. The groundwater, which was CaMgHCO3 and NaHCO3, is chemically evolved rainfall (CaMgSO4Cl) in the area. Silicate mineral dissolution and cation-exchange were the main controls on groundwater chemistry while there was little anthropogenic influence. The major ions and TDS concentrations classified the water as suitable for human consumption as per WHO guidelines. The narrow cluster of δ18O and δD of same groundwater from both seasons between the δ18O and δD values of May–June precipitation along the Ndop Meteoric Water Line indicates meteoric origin, rapid recharge (after precipitation) and timing of recharge between May and June rainfall. Diffuse groundwater recharge mainly occurs at low altitudes (<1,400 m asl) within the plain. Besides major ions and TDS, the similar δ18O and δD of groundwater from both seasons indicate a consistent groundwater recharge and flow pattern throughout the year and resilience to present day short-term seasonal climatic variations. However, controlled groundwater abstraction is recommended given the increasing demand.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号