首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
大气科学   1篇
地质学   6篇
  2022年   1篇
  2013年   1篇
  2009年   2篇
  2006年   1篇
  1991年   1篇
  1986年   1篇
排序方式: 共有7条查询结果,搜索用时 140 毫秒
1
1.
Numerical analysis of stone column supported foundations   总被引:2,自引:0,他引:2  
In this paper, settlement and failure load of rafts resting on stone column reinforced soft clays are analyzed. The influence of the stone columns is assumed to be uniformly and homogeneously distributed throughout the reinforced region. It is also assumed that both columns and surrounding soil undergo the same total strains i.e. no slip occurs on the soil-column interface. A constitutive model is presented for an equivalent material. It combines different elasto-plastic laws, namely the Critical State model for clay and the Mohr-Coulomb criterion for gravel. Continuity of radial stresses is ensured by an additional pseudo-yield criterion. The model is incorporated in a finite element code and results for a circular footing are presented. The influence of dilatancy of the columns is highlighted together with the differences in the behaviour for columns situated at the centre or at the outer boundary of the footing. Flexible as well as rigid foundations are considered. It is emphasized that the finite element mesh is independent of the column spacing leading to considerable advantages in carrying out parametric studies.  相似文献   
2.
In this paper an extension of existing multilaminate soil models is presented, which can account for inherent and stress‐induced cross‐anisotropic elasticity in the small strain range and its dependency on the load history. In the multilaminate framework, material behaviour is formulated on a number of local planes in each stress point, and the macroscopic response of the material is obtained by integration of the local contributions. Strain‐induced anisotropy, which adds to the stiffness anisotropy inherently present in the material, is therefore intrinsically taken into account. Micro–macro relations between local parameters on plane level and global parameters on macroscopic level are obtained by the spectral decomposition of the global elastic compliance matrix. The model is implemented into a finite‐element code, and model predictions are compared with experimental data of triaxial tests on different soils involving small and large load cycles. The importance of cross‐anisotropic elasticity within the small strain range for predicting ground deformations in geotechnical boundary value problems is discussed at the example of an excavation problem. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
3.
Simulations of late 20th and 21st century Arctic cloud amount from 20 global climate models (GCMs) in the Coupled Model Intercomparison Project phase 3 (CMIP3) dataset are synthesized and assessed. Under recent climatic conditions, GCMs realistically simulate the spatial distribution of Arctic clouds, the magnitude of cloudiness during the warmest seasons (summer–autumn), and the prevalence of low clouds as the predominant type. The greatest intermodel spread and most pronounced model error of excessive cloudiness coincides with the coldest seasons (winter–spring) and locations (perennial ice pack, Greenland, and the Canadian Archipelago). Under greenhouse forcing (SRES A1B emissions scenario) the Arctic is expected to become cloudier, especially during autumn and over sea ice, in tandem with cloud decreases in middle latitudes. Projected cloud changes for the late 21st century depend strongly on the simulated modern (late 20th century) annual cycle of Arctic cloud amount: GCMs that correctly simulate more clouds during summer than winter at present also tend to simulate more clouds in the future. The simulated Arctic cloud changes display a tripole structure aloft, with largest increases concentrated at low levels (below 700 hPa) and high levels (above 400 hPa) but little change in the middle troposphere. The changes in cloud radiative forcing suggest that the cloud changes are a positive feedback annually but negative during summer. Of potential explanations for the simulated Arctic cloud response, local evaporation is the leading candidate based on its high correlation with the cloud changes. The polar cloud changes are also significantly correlated with model resolution: GCMs with higher spatial resolution tend to produce larger future cloud increases.  相似文献   
4.
5.
The paper investigates the effect of constitutive models on the predicted response of a simplified benchmark problem, an embankment on soft soil. The soft soil is assumed to have the properties of POKO clay from Finland and five different constitutive models are used to model the deposit. Two of the models are isotropic models, i.e. the Modified Cam Clay model and the Soft‐Soil model. The other models are recently proposed constitutive models that account for plastic anisotropy. The S‐CLAY1 and S‐CLAY1S models are embedded in a standard elasto‐plastic framework and account for anisotropy via a rotational hardening law. In addition, the S‐CLAY1S model accounts for bonding and destructuration. In contrast, the Multilaminate Model for Clay (MMC) accounts for plastic anisotropy by utilizing so‐called multilaminate framework. The results of numerical simulations show that accounting for anisotropy results in notable differences in the predicted settlements and horizontal movements compared to the predictions using the isotropic models. There are also significant differences in the K0 predictions by the different constitutive models and this has a significant impact on the results. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
6.
Acta Geotechnica - Determination of earth pressures is one of the fundamental tasks in geotechnical engineering. Although many different methods have been utilized to present passive earth pressure...  相似文献   
7.
In this paper a constitutive model for soils incorporating small strain stiffness formulated in the multilaminate framework is presented. In the multilaminate framework, the stress–strain behaviour of a material is obtained by integrating the mechanical response of an infinite number of randomly oriented planes passing through a material point. Such a procedure leads to a number of advantages in describing soil behaviour, the most significant being capture of initial and induced anisotropy due to plastic flow in a physically meaningful manner. In the past, many soil models of varying degree of refinement in the multilaminate framework have been presented by various authors. However, the issue of high initial soil stiffness in the range of very small strains and its degradation with straining, commonly referred to as ‘small strain stiffness’, has not been addressed within the multilaminate framework. In this paper, we adopt a micromechanics‐based approach to derive small strain elastic stiffness of the soil mass. Comparison of laboratory test data with results obtained from numerical simulations based on the proposed constitutive model incorporating small strain stiffness is performed to demonstrate its predictive capabilities. The model is implemented in a finite element code and numerical simulations of a deep excavation are presented with and without incorporation of small strain stiffness to demonstrate its importance in predicting profiles of deformation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号