首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
地质学   4篇
  2017年   2篇
  2016年   2篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Northern Algeria has experienced many destructive earthquakes throughout its history. The largest recent events occurred in El Asnam on October 10, 1980 (moment magnitude; Mw = 7.3), in Constantine on October 27, 1985 (surface-wave magnitude; Ms = 6.0), and in Zemmouri–Boumerdes on May 21, 2003 (Mw = 6.8). Because of the high population density and industrialization in these regions, the earthquakes had disastrous consequences and hence highlighted the vulnerability of Algeria to seismic events. To reduce seismic risk in Constantine, the capital city of East Algeria, we present a seismic risk scenario for this city, focusing on the vulnerability of the key historic areas of Coudia, Bellevue–Ciloc, and the Old City. This scenario allows us to assess the maximum ground acceleration using empirical attenuation laws, based on the following considerations: (a) the 1985 Constantine seismic event as an earthquake reference; (b) site effects related to regional geology; (c) damage to buildings, and (d) seismic vulnerability. This study shows the map of peak ground acceleration taking into account the effects of site lithology (Avib). We observe the strongest vibrations along the two rivers “Boumerzoug and Rhumel” and also, we note that the EC8 gives a good estimate acceleration in the image of the three studied areas (Bellevue–Ciloc, Coudia, and Old Town). By correlating with the geology, we observe an acceleration of 0.13 g in the neritic limestone of the rock (Old Town) something that fits with the value obtained 0.14 g (PGA) without taking into consideration the lithology. Moreover, according to the Algerian Earthquake Engineering Code (2003) (RPA), the Wilaya of Constantine is classified in the zone IIa (medium seismicity) with an acceleration data of 0.25 g. This study integrates geographic information system (GIS) data into risk models.  相似文献   
2.

Northern Algeria has experienced many destructive earthquakes throughout its history. The largest recent events occurred in El Asnam on October 10, 1980 (moment magnitude; Mw = 7.3), in Constantine on October 27, 1985 (surface-wave magnitude; Ms = 6.0), and in Zemmouri–Boumerdes on May 21, 2003 (Mw = 6.8). Because of the high population density and industrialization in these regions, the earthquakes had disastrous consequences and hence highlighted the vulnerability of Algeria to seismic events. To reduce seismic risk in Constantine, the capital city of East Algeria, we present a seismic risk scenario for this city, focusing on the vulnerability of the key historic areas of Coudia, Bellevue–Ciloc, and the Old City. This scenario allows us to assess the maximum ground acceleration using empirical attenuation laws, based on the following considerations: (a) the 1985 Constantine seismic event as an earthquake reference; (b) site effects related to regional geology; (c) damage to buildings, and (d) seismic vulnerability. This study shows the map of peak ground acceleration taking into account the effects of site lithology (Avib). We observe the strongest vibrations along the two rivers “Boumerzoug and Rhumel” and also, we note that the EC8 gives a good estimate acceleration in the image of the three studied areas (Bellevue–Ciloc, Coudia, and Old Town). By correlating with the geology, we observe an acceleration of 0.13 g in the neritic limestone of the rock (Old Town) something that fits with the value obtained 0.14 g (PGA) without taking into consideration the lithology. Moreover, according to the Algerian Earthquake Engineering Code (2003) (RPA), the Wilaya of Constantine is classified in the zone IIa (medium seismicity) with an acceleration data of 0.25 g. This study integrates geographic information system (GIS) data into risk models.

  相似文献   
3.
This paper presents a seismic hazard evaluation and develops an earthquake catalogue for the Constantine region over the period from 1357 to 2014. The study contributes to the improvement of seismic risk management by evaluating the seismic hazards in Northeast Algeria. A regional seismicity analysis was conducted based on reliable earthquake data obtained from various agencies (CRAAG, IGN, USGS and ISC). All magnitudes (M l, m b) and intensities (I 0, I MM, I MSK and I EMS) were converted to M s magnitudes using the appropriate relationships. Earthquake hazard maps were created for the Constantine region. These maps were estimated in terms of spectral acceleration (SA) at periods of 0.1, 0.2, 0.5, 0.7, 0.9, 1.0, 1.5 and 2.0 s. Five seismogenic zones are proposed. This new method differs from the conventional method because it incorporates earthquake magnitude uncertainty and mixed datasets containing large historical events and recent data. The method can be used to estimate the b value of the Gutenberg-Richter relationship, annual activity rate λ(M) of an event and maximum possible magnitude M max using incomplete and heterogeneous data files. In addition, an earthquake is considered a Poisson with an annual activity rate λ and with a doubly truncated exponential earthquake magnitude distribution. Map of seismic hazard and an earthquake catalogue, graphs and maps were created using geographic information systems (GIS), the Z-map code version 6 and Crisis software 2012.  相似文献   
4.
The rigid-pile soil-improvement technique aims to increase the bearing capacity of the soil and decrease the settlement of the surface structure. The most remarkable difference of this technique from the deep-foundation system is the soil layer between the pile heads and the structure. This soil layer, called the mattress, is made of compacted granular materials and participates in the load transfer through arching and shear mechanisms. In order to understand the dynamic behavior of rigid-pile reinforced soils, tri-dimensional finite-element analyses of a soil-pile-slab system, a soil-pile-mattress-slab system, and a soil-pile-mattress-embankment system are presented in this paper. Different geometric configurations are studied in terms of dynamic impedances. The soil, piles, mattress, and embankment are represented as continuum solids, and the slab is represented by structural plate-type elements. The horizontal and vertical impedances of pile foundations are presented and the results are compared with studies in the literature. This study shows the influence of the mattress stiffness, the geometrical configuration, and head/tip fixity conditions on the dynamic response of the foundation system. A comparison between rigid piles and pile foundations is then presented.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号