首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   0篇
大气科学   1篇
地球物理   2篇
地质学   45篇
海洋学   1篇
综合类   1篇
自然地理   1篇
  2023年   1篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2010年   5篇
  2009年   3篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   5篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1990年   3篇
  1988年   2篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
排序方式: 共有51条查询结果,搜索用时 15 毫秒
1.
The Ashland pluton is a calc-alkaline plutonic complex thatintruded the western Paleozoic and Triassic belt of the KlamathMountains in late Middle Jurassic time. The pluton comprisesa series of compositionally distinct magma pulses. The oldestrocks are hornblende gabbro and two-pyroxene quartz gabbro withinitial 87Sr/86Sr = 0{dot}7044, 18O = 8{dot}7%, and REE patternswith chondrite normalized La/Lu = 7. These units were followedby a suite of tonalitic rocks (LaN/LuN = 7) and then by a suiteof K2O- and P2O5 rocks of quartz monzodioritic affinity (LaN/LuN= 13–21; LaN/SmN = 2{dot}4–3{dot}) The quartz monzodioriticrocks were then intruded by biotite granodiorite and granitewith lower REE abundances but more fractionated LREE(LaN/LuN= 13–19; LaN/SmN = 4{dot}3–6 and they, in turn,were host to dikes and bosses of hornblende diorite. The latestintrusive activity consisted of aplitic and granitic dikes.Combined phase equilibria and mineral composition data, indicateemplacement conditions of approximately Ptotal = 2{dot}3kb,PH2O between 1{dot}5 and 2{dot}2 kb, and fO2 between the nickel-nickeloxide and hematite-magnetite buffers. Successive pulses of magma display increasing SiO2 togetherwith increasing 18O and decreasing initial 87Sr/86Sr. The isotopicdata are consistent with either (1) combined fractional crystallizationof andesitic magma and concurrent assimilation of crustal materialcharacterized by low Sr1 and high (18O or, more probably, (2)a series of partial melting events in which sources were successivelyless radiogenic but richer in 18O Each intrusive stage displaysevidence for some degree of crystal accumulation and/or fractionalcrystallization but neither process adequately accounts fortheir compositional differences. Consequently, each stage appearsto represent a distinct partial melting or assimilation event. The P2O5-rich nature of the quartz monzodiorite suite suggestsaccumulation of apatite. However, the suite contains abundantmafic microgranitoid enclaves and most apatite in the suiteis acicular. These observations suggest that magma mixing affectedthe compositional variation of the quartz monzodiorite suite.Mass balance calculations are consistent with a simple mixingprocess in which P2O5-rich alkalic basalt magma (representedby the mafic microgranitoid enclaves) was combined with a crystal-poorfelsic magma (represented by the tonalite suite), yielding aquartz monzodioritic magma that then underwent differentiationby crystal fractionation and accumulation.  相似文献   
2.
Chromite compositions in komatiites are influenced by metamorphicprocesses, particularly above 500°C. Metamorphosed chromiteis substantially more iron rich than igneous precursors, asa result of Mg–Fe exchange with silicates and carbonates.Chromite metamorphosed to amphibolite facies is enriched inZn and Fe, and depleted in Ni, relative to lower metamorphicgrades. Relative proportions of the trivalent ions Cr3+, Al3+and Fe3+ are not greatly modified by metamorphism up to loweramphibolite facies, although minor Fe3+ depletion occurs duringtalc–carbonate alteration at low temperature. SignificantAl is lost from chromite cores above 550°C, as a resultof equilibration with fluids in equilibrium with chlorite. ElevatedZn content in chromite is restricted to rocks with low (metamorphic)Mg/Fe ratios, and is the result of introduction of Zn duringlow-temperature alteration, with further concentration and homogenizationduring prograde metamorphism. Cobalt and Mn also behave similarly,except where carbonate minerals are predominant in the metamorphicassemblage. Chromite at amphibolite facies is typically extensivelyreplaced by magnetite. This is the result of incomplete metamorphicreaction between chromite and chlorite-bearing silicate assemblages.Magnetite compositions at the inner chromite–magnetiteboundary are indicators of metamorphic grade. KEY WORDS: chromite; komatiite; spinel; metamorphism; Zn  相似文献   
3.
Many chromite-rich rocks contain relatively high concentrations of the platinum-group elements (PGE). In many cases, the phases carrying PGE occur as either platinum-group minerals (PGM) or as base metal sulfides in solid solution in sulfides. In some cases, such as the UG-2 unit of the Bushveld Complex, the PGM are occluded inside chromite grains. Chromites are notably difficult to dissolve in most fluxes and if the chromite contains some PGM the possibility exists that not all the PGE will be recovered during fusion. In this work, shortcomings in published methods of analysis based on the nickel sulfide fire assay procedure were investigated and a new procedure developed based on the addition of sodium metaphosphate to the fusion mixture. Optimum composition of the fusion mixture was found to be 10 g sodium metaphosphate and 9 g silica to 10 g sample, 15 g sodium carbonate, 30 g lithium tetraborate, 7.5 g nickel and 4.5 g sulfur to achieve complete dissolution of chromite grains. The new flux mixture was evaluated by the analysis of reference material CHR-Pt+ (which is known to contain PGM inside chromite grains) and no undissolved chromite grains were found in the glassy slag. Analysis of the nickel sulfide beads from this fire assay using neutron activation analysis showed similar results for Rh and Ru when compared with published conventional true (or accepted) values, while Au, Ir, Os, Pd and Pt values determined here were 10 to 30% higher than the corresponding published conventional true values. It was concluded that the addition of sodium metaphosphate improved chromite dissolution in the flux and appears to improve PGE recovery.  相似文献   
4.
Concentrations of the platinum-group elements have been determined in several suites of southern African flood-type basalts and mid-ocean ridge basalt (MORB), covering some 3 Ga of geologic evolution and including the Etendeka, Karoo, Soutpansberg, Machadodorp, Hekpoort, Ventersdorp and Dominion magmas. The magmas cover a compositional range from 3.7 to 18.7% MgO, 26–720 ppm Ni, 16–250 ppm Cu, and <1–255 ppb total platinum-group elements (PGE). The younger basalts (Etendeka, Karoo) tend to be depleted in PGE relative to Cu, while most of the older basalts (Hekpoort, Machadodorp, Ventersdorp, Dominion) show no PGE depletion relative to Cu. Further, the younger basalts tend to have lower average Pt/Pd ratios than the older basalts, and the MORBs have lower average Pt/Pd than the continental basalts within the broad groupings of "old" and "young" basalts. This may reflect (1) a decreasing degree of mantle melting through geologic time, and (2) source heterogeneity, in that the MORBs are derived from predominantly asthenospheric mantle, whereas the continental basalts also contain a lithospheric mantle component enriched in Pt. In addition to these factors, some PGE fractionation also occurred during differentiation of the magmas, with Pd showing incompatible behaviour and the other PGE variably compatible behaviour. The examined southern African flood-type basalts and MORB appear to offer limited prospects for magmatic sulfide ores, largely because they show little evidence for significant chalcophile metal depletion that could be the result of sulphide extraction during ascent and crystallization.Editorial responsibility: I. Parsons  相似文献   
5.
The Perseverance ultramafic complex is a body of olivine-richkomatiitic rocks spatially associated with the Agnew nickeldeposit, in the Agnew-Wiluna greenstone belt of the ArchaeanYilgarn Block in Western Australia. The complex consists ofa central lenticular body, up to 700 m thick, of olivine adcumulates,flanked by laterally extensive sheet-like bodies of olivineorthocumulates and spinifextextured komatiite flows. Rocks progressivelyfurther away from the central lens have chemical compositionsreflecting higher original proportions of komatiite liquid tocumulus olivine. Parent liquids had MgO contents between 25and 32% MgO, approximately chondritic Al/Ti ratios and HREEpatterns, and moderate depletion in LREE. Olivines within the adcumulate lens show a progressive increasein forsterite content from Fo93 at the bottom to Fo94?5, atthe top. Calculated original olivine compositions in the flankingrocks are similar to those at the base of the central lens.Original olivine nickel contents show a symmetrical variationfrom maximum values of 3500 ppm at the top of the central lens,through minimum values of 1000 ppm at the base and margins ofthe central lens to intermediate values in the distal rocks.The complex as a whole shows evidence for nickel depletion relativeto other komatiite suites. These observations are explained in terms of prolonged eruptionand flow of komatiitic lava down a major flow channel or lavariver. Adcumulates crystallized on the floor and sides of thecentral channel, which was formed at an early stage by thermalerosion of floor rocks. Episodic overflow of the central channelproduced distal ‘flood plain’ rocks consisting ofolivine orthocumulates and layered flows. Lavas became moremagnesian and nickel-rich with time, giving rise to the observedspatial variation in primary olivine composition. Nickel depletionof the earliest lavas is attributed to pre-eruption segregationof large volumes of immiscible Fe-Ni-sulfide, which were concentratedto form the underlying Agnew nickel deposit.  相似文献   
6.
Instrumental neutron activation analysis of rocks and minerals is currently done on basis of collecting 2 or 3 energy spectra. We have found that, by collecting one spectrum one week after irradiation, satisfactory results for the USGS and CRPG geochemical reference samples can be obtained.  相似文献   
7.
Concentrations of Ag, Au, Cd, Co, Re, Zn and Platinum-group elements (PGE) have been determined in sulfide minerals from zoned sulfide droplets of the Noril’sk 1 Medvezky Creek Mine. The aims of the study were; to establish whether these elements are located in the major sulfide minerals (pentlandite, pyrrhotite, chalcopyrite and cubanite), to establish whether the elements show a preference for a particular sulfide mineral and to investigate the model, which suggests that the zonation in the droplets is caused by the crystal fractionation of monosulfide solid solution (mss). Nickel, Cu, Ag, Re, Os, Ir, Ru, Rh and Pd, were found to be largely located in the major sulfide minerals. In contrast, less than 25% of the Au, Cd, Pt and Zn in the rock was found to be present in these sulfides. Osmium, Ir, Ru, Rh and Re were found to be concentrated in pyrrhotite and pentlandite. Palladium and Co was found to be concentrated in pentlandite. Silver, Cd and Zn concentrations are highest in chalcopyrite and cubanite. Gold and platinum showed no preference for any of the major sulfide minerals. The enrichment of Os, Ir, Ru, Rh and Re in pyrrhotite and pentlandite (exsolution products of mss) and the low levels of these elements in the cubanite and chalcopyrite (exsolution products of intermediate solid solution, iss) support the mss crystal fractionation model, because Os, Ir, Ru, Rh and Re are compatible with mss. The enrichment of Ag, Cd and Zn in chalcopyrite and cubanite also supports the mss fractionation model these minerals are derived from the fractionated liquid and these elements are incompatible with mss and thus should be enriched in the fractionated liquid. Gold and Pt do not partition into either iss or mss and become sufficiently enriched in the final fractionated liquid to crystallize among the iss and mss grains as tellurides, bismithides and alloys. During pentlandite exsolution Pd appears to have diffused from the Cu-rich portion of the droplet into pentlandite.  相似文献   
8.
Magmatic sulfide deposits consist of pyrrhotite, pentlandite, chalcopyrite (± pyrite), and platinum-group minerals (PGM). Understanding the distribution of the chalcophile and platinum-group element (PGE) concentrations among the base metal sulfide phases and PGM is important both for the petrogenetic models of the ores and for the efficient extraction of the PGE. Typically, pyrrhotite and pentlandite host much of the PGE, except Pt which forms Pt minerals. Chalcopyrite does not host PGE and the role of pyrite has not been closely investigated. The Ni–Cu–PGE ores from the South Range of Sudbury are unusual in that sulfarsenide PGM, rather than pyrrhotite and pentlandite, are the main carrier of PGE, probably as the result of arsenic contribution to the sulfide liquid by the As-bearing metasedimentary footwall rocks. In comparison, the North Range deposits of Sudbury, such as the McCreedy East deposit, have As-poor granites in the footwall, and the ores commonly contain pyrite. Our results show that in the pyrrhotite-rich ores of the McCreedy East deposit Os, Ir, Ru, Rh (IPGE), and Re are concentrated in pyrrhotite, pentlandite, and surprisingly in pyrite. This indicates that sulfarsenides, which are not present in the ores, were not important in concentrating PGE in the North Range of Sudbury. Palladium is present in pentlandite and, together with Pt, form PGM such as (PtPd)(TeBi)2. Platinum is also found in pyrite. Two generations of pyrite are present. One pyrite is primary and locally exsolved from monosulfide solid solution (MSS) in small amounts (<2 wt.%) together with pyrrhotite and pentlandite. This pyrite is unexpectedly enriched in IPGE, As (± Pt) and the concentrations of these elements are oscillatory zoned. The other pyrite is secondary and formed by alteration of the MSS cumulates by late magmatic/hydrothermal fluids. This pyrite is unzoned and has inherited the low concentrations of IPGE and Re from the pyrrhotite and pentlandite that it has replaced.  相似文献   
9.
Current models of solute movement in catchments are based on rainfall–runoff models and are consequently biased towards processes which determine the magnitude and timing of water flux. It is shown here that the instantaneous unit hydrograph (IUH), or runoff response function, obtained from a hydrograph is fundamentally different from the residence time distribution which governs the response to solutes/tracers. Using hydrometric and tracer data obtained from a small (25 ha) catchment in the humid tropics a modification of the IUH technique is demonstrated which also allows approximate modelling of the tracer data. New features of the modified conceptual model are identified with known hillslope processes.  相似文献   
10.
The Kabanga Ni sulfide deposit represents one of the most significant Ni sulfide discoveries of the last two decades, with current indicated mineral resources of 23.23 Mt at 2.64% Ni and inferred mineral resources of 28.5 Mt at 2.7% Ni (Nov. 2008). The sulfides are hosted by a suite of ∼1.4 Ga ultramafic–mafic, sill-like, and chonolithic intrusions that form part of the approximately 500 km long Kabanga–Musongati–Kapalagulu igneous belt in Tanzania and Burundi. The igneous bodies are up to about 1 km thick and 4 km long. They crystallized from several compositionally distinct magma pulses emplaced into sulfide-bearing pelitic schists. The first magma was a siliceous high-magnesium basalt (approximately 13.3% MgO) that formed a network of fine-grained acicular-textured gabbronoritic and orthopyroxenitic sills (Mg# opx 78–88, An plag 45–88). The magma was highly enriched in incompatible trace elements (LILE, LREE) and had pronounced negative Nb and Ta anomalies and heavy O isotopic signatures (δ18O +6 to +8). These compositional features are consistent with about 20% contamination of primitive picrite with the sulfidic pelitic schists. Subsequent magma pulses were more magnesian (approximately 14–15% MgO) and less contaminated (e.g., δ18O +5.1 to +6.6). They injected into the earlier sills, resulting in the formation of medium-grained harzburgites, olivine orthopyroxenites and orthopyroxenites (Fo 83–89, Mg# opx 86–89), and magmatic breccias consisting of gabbronorite–orthopyroxenite fragments within an olivine-rich matrix. All intrusions in the Kabanga area contain abundant sulfides (pyrrhotite, pentlandite, and minor chalcopyrite and pyrite). In the lower portions and the immediate footwall of two of the intrusions, namely Kabanga North and Kabanga Main, there occur numerous layers, lenses, and veins of massive Ni sulfides reaching a thickness of several meters. The largest amount of high grade, massive sulfide occurs in the smallest intrusion (Kabanga North). The sulfides have heavy S isotopic signatures (δ34S wr = +10 to +24) that broadly overlap with those of the country rock sulfides, consistent with significant assimilation of external sulfur from the Karagwe–Ankolean sedimentary sequence. However, based partly on the relatively homogenous distribution of disseminated sulfides in many of the intrusive rocks, we propose that the Kabanga magmas reached sulfide saturation prior to final emplacement, in staging chambers or feeder conduits, followed by entrainment of the sulfides during continued magma ascent. Oxygen isotope data indicate that the mode of sulfide assimilation changed with time. The heavy δ18O ratios of the early magmas are consistent with ingestion of the sedimentary country rocks in bulk. The relatively light δ18O ratios of the later magmas indicate less bulk assimilation of the country rocks, but in addition the magmas selectively assimilated additional S, possibly through devolatization of the country rocks or through cannibalization of magmatic sulfides deposited in the conduits by preceding magma surges. The intrusions were tilted at ca. 1.37 Ga, during the Kibaran orogeny and associated synkinematic granite plutonism. This caused solid-state mobilization of ductile sulfides into shear zones, notably along the base of the intrusions where sulfide-hornfels breccias and lenses and layers of massive sulfides may reach a thickness of >10 m and can extend for several 10 s to >100 m away from the intrusions. These horizons represent an important exploration target for additional nickel sulfide deposits.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号