首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
地质学   2篇
  2005年   1篇
  1979年   1篇
排序方式: 共有2条查询结果,搜索用时 31 毫秒
1
1.
Jurassic age volcanic rocks of the Stonyford volcanic complex(SFVC) comprise three distinct petrological groups based ontheir whole-rock geochemistry: (1) oceanic tholeiites; (2) transitionalalkali basalts and glasses; (3) high-Al, low-Ti tholeiites.Major and trace element, and Sr–Nd–Pb isotopic dataindicate that the oceanic tholeiites formed as low-degree partialmelts of normal mid-ocean ridge basalt (N-MORB)-source asthenospheresimilar in isotope composition to the East Pacific Rise today;the alkalic lavas were derived from an enriched source similarto that of E-MORB. The high-Al, low-Ti lavas resemble second-stagemelts of a depleted MORB-source asthenosphere that formed bymelting spinel lherzolite at low pressures. Trace element systematicsof the high-Al, low-Ti basalts show the influence of an enrichedcomponent, which overprints generally depleted trace elementcharacteristics. Tectonic discrimination diagrams show thatthe oceanic tholeiite and alkali suites are similar to present-daybasalts generated at mid-oceanic ridges. The high-Al, low-Tisuite resembles primitive arc basalts with an enriched, alkalibasalt-like overprint. Isotopic data show the influence of recycledcomponents in all three suites. The SFVC was constructed ona substrate of normal Coast Range ophiolite in an extensionalforearc setting. The close juxtaposition of the MORB-like olivinetholeiites with alkali and high-Al, low-Ti basalts suggestsderivation from a hybrid mantle source region that includedMORB-source asthenosphere, enriched oceanic asthenosphere, andthe depleted supra-subduction zone mantle wedge. We proposethat the SFVC formed in response to collision of a mid-oceanridge spreading center with the Coast Range ophiolite subductionzone. Formation of a slab window beneath the forearc duringcollision allowed the influx of ridge-derived magmas or themantle source of these magmas. Continued melting of the previouslydepleted mantle wedge above the now defunct subduction zoneproduced strongly depleted high-Al, low-Ti basalts that werepartially fertilized with enriched, alkali basalt-type meltsand slab-derived fluids. KEY WORDS: CRO; oceanic basalts; California  相似文献   
2.
The spinel lherzolite massif at Balmuccia, northwest Italy,forms an elongate north-south trending lens (4.5 x 0.5 x 1.1km) within the pre-Alpine granulite basement complex of theIvrea zone. The western contact is a mylonite fault zone formedduring late emplacement cataclastic flow near the Insubric line;to the east the lherzolite massif is separated from the granulitesby a magmatic sheath of layered pyroxenites, pyroxene pegmatitesand meta-gabbros. Pyroxene reaction zones on gabbro dikes indunite pods which lie east of the main lherzolite massif showthat emplacement occurred at pressures >9 kb, based on peridotiteequilibria studies. Phase chemistry calculations on pyroxenitesand granulites show ambient P–T conditions to have been850 °C (Cpx–Opx equilibria) and 10–13 kb (Opx–Gt;Plg–Gt–Sill–Qtz) during emplacement of thelherzolite massif. Temperature calculations on 12 peridotitesfrom throughout the massif suggest an earlier high-T stage (1200°C; Ol–Px–Sp) followed by partial re-equilibrationat lower T (850–950 °C; Cpx–Opx). The areaswithin the lherzolite massif with the highest calculated Ol–Px–Sptemperatures have the lowest Cpx–Opx temperatures, suggestingthat the apparent Cpx–Opx temperatures are due to re-equilibrationduring emplacement. The spinel lherzolite probably originatedat 12 and 20 kb, based on the mineral assemblage Ol + Opx +Cpx + Sp + Hnbd. The inferred P–T ranges put both themassif and the granulites on a geotherm that is high for continentalcrust and implies a high surface heat flow at the time of emplacement(2.2 µcal/cm2 sec). The Balmuccia area later became thelocus of early Mesozoic rifting between the North and SouthAlpine plates. These relationships at Balmuccia are similarto the Great Basin of the western United States, where mantlexenoliths in young basalts that show P–T conditions of1100–1300 °C at 17–20 kb, occur in an area ofhigh heat flow (2.0 µCal/cm2 sec average) and extension.This suggests an association between up-welling of mantle peridotitesbelow continents and ensialic tensional tectonics.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号