首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   1篇
地球物理   9篇
地质学   1篇
自然地理   1篇
  2022年   1篇
  2016年   1篇
  2015年   1篇
  2013年   2篇
  2010年   1篇
  2002年   1篇
  2000年   1篇
  1997年   2篇
  1994年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
2.
3.
Understanding flow pathways and mechanisms that generate streamflow is important to understanding agrochemical contamination in surface waters in agricultural watersheds. Two environmental tracers, δ18O and electrical conductivity (EC), were monitored in tile drainage (draining 12 ha) and stream water (draining nested catchments of 6‐5700 ha) from 2000 to 2008 in the semi‐arid agricultural Missouri Flat Creek (MFC) watershed, near Pullman Washington, USA. Tile drainage and streamflow generated in the watershed were found to have baseline δ18O value of ?14·7‰ (VSMOW) year round. Winter precipitation accounted for 67% of total annual precipitation and was found to dominate streamflow, tile drainage, and groundwater recharge. ‘Old’ and ‘new’ water partitioning in streamflow were not identifiable using δ18O, but seasonal shifts of nitrate‐corrected EC suggest that deep soil pathways primarily generated summer streamflow (mean EC 250 µS/cm) while shallow soil pathways dominated streamflow generation during winter (EC declining as low as 100 µS/cm). Using summer isotopic and EC excursions from tile drainage in larger catchment (4700‐5700 ha) stream waters, summer in‐stream evaporation fractions were estimated to be from 20% to 40%, with the greatest evaporation occurring from August to October. Seasonal watershed and environmental tracer dynamics in the MFC watershed appeared to be similar to those at larger watershed scales in the Palouse River basin. A 0·9‰ enrichment, in shallow groundwater drained to streams (tile drainage and soil seepage), of δ18O values from 2000 to 2008 may be evidence of altered precipitation conditions due to the Pacific Decadal Oscillation (PDO) in the Inland Northwest. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
4.
In this study, we tested a practical strategy useful for accurate chlorinated volatile organic compound (cVOC) sorption prediction. Corresponding to the feature of the superposition of adsorption due to thermally altered carbonaceous matter (TACM) with organic carbon‐water partitioning, a nonlinear Freundlich sorption isotherm covering a wide range of aqueous concentrations was defined by equilibrium sorption measurement at one or a few low concentration points with extrapolation to the empirical organic carbon‐water partition coefficient (Koc,e) near compound solubility. We applied this approach to obtain perchloroethene equilibrium sorption isotherm parameters for TACM‐containing glacial sand and gravel subsoil samples from a field site in New York. Sorption and associated Koc,c applicable to low (5–500 µg/L) and high (>100,000 µg/L) aqueous concentrations were determined in batch experiments. (The Koc,c is the organic carbon‐normalized sorption partition coefficient corresponding to aqueous concentration Cw.) The Koc,c measurements at low concentration (~5 µg/L) were 6 to 34 times greater than the Koc,e. The importance of this type of data is illustrated through presentation of its substantial impact on the site remedy. In so doing, we provide an approach that is broadly applicable to cVOC field sites with similar circumstances (low carbon content glacial sand and gravel with TACM).  相似文献   
5.
6.
7.
We present a new field measurement and numerical interpretation method (combined termed “test”) to parameterize the diffusion of trichloroethene (TCE) and its biodegradation products (DPs) from the matrix of sedimentary rock. The method uses a dual-packer system to interrogate a low-permeability section of the rock matrix adjacent to a previously contaminated borehole and uses the borehole monitoring history to establish the pretest condition. TCE and its DPs are removed from the groundwater between the packers at the onset of the testing. The parameters estimated by fitting a radial diffusion model to the concentration history and borehole concentration data, also termed back diffusion, are the tortuosity factor and sorption coefficients of TCE and DPs in the rock matrix and the TCE and DP biodegradation rate coefficients in the borehole. We demonstrate the equipment design and the interpretive method using a borehole accessing the gray mudstone at a TCE contaminated site in the Newark Basin. In this test, both nonreactive (bromide) and reactive (trichlorofluoroethene) tracers are used to constrain the estimated parameters; however, the bromide tracer was not needed to estimate the parameters in this test. The parameters estimated from the field test are consistent with values measured independently in laboratory experiments using field samples of similar lithology. From the interpretation, we compute the TCE and DP concentration distributions in the rock matrix prior to the test to illustrate how the results can be used to enhance understanding of contaminant distribution in the rock matrix.  相似文献   
8.
9.
Temporal Hyporheic Zone Response to Water Table Fluctuations   总被引:1,自引:0,他引:1       下载免费PDF全文
Expansion and contraction of the hyporheic zone due to temporal hydrologic changes between stream and riparian aquifer influence the biogeochemical cycling capacity of streams. Theoretical studies have quantified the control of groundwater discharge on the depth of the hyporheic zone; however, observations of temporal groundwater controls are limited. In this study, we develop the concept of groundwater‐dominated differential hyporheic zone expansion to explain the temporal control of groundwater discharge on the hyporheic zone in a third‐order stream reach flowing through glacially derived terrain typical of the Great Lakes region. We define groundwater‐dominated differential expansion of the hyporheic zone as: differing rates and magnitudes of hyporheic zone expansion in response to seasonal vs. storm‐related water table fluctuation. Specific conductance and vertical hydraulic gradient measurements were used to map changes in the hyporheic zone during seasonal water table decline and storm events. Planar and riffle beds were monitored in order to distinguish the cause of increasing hyporheic zone depth. Planar bed seasonal expansion of the hyporheic zone was of a greater magnitude and longer in duration (weeks to months) than storm event expansion (hours to days). In contrast, the hyporheic zone beneath the riffle bed exhibited minimal expansion in response to seasonal groundwater decline compared to storm related expansion. Results indicated that fluctuation in the riparian water table controlled seasonal expansion of the hyporheic zone along the planar bed. This groundwater induced hyporheic zone expansion could increase the potential for biogeochemical cycling and natural attenuation.  相似文献   
10.
A field lest to evaluate the applicability of an oxygon-releasing compound (ORC) to the rernediation of ground water contaminated with benzone and toluene was conducted in the Borden Aquifer in Ontario. Canada. Benzene and toluene were injected as organic substrates to represent BTEX compounds, bromide was used as a tracer, and nitrate was added to avoid nitrate-limited conditions.
The fate of the solutes was monitored along four lines of monitoring points and wells. Two lines studied the behavior of the solutes upgradient and downgradient of two large-diameter well screens filled with briquets containing ORC and briquets without ORC. One line was used to study the solute behavior upgradient and downgradient of columns of ORC powder placed directly in the saturated zone. The remaining line was a control.
The results indicate that ORC in both briquet and powder form can release significant amounts of oxygen to conlaminated ground water passing by it. In the formulation used in this work, oxygen release persisted for at least 10 weeks. Furthemiore, the study indicates that the enhancement of the available dissolved oxygen content of at least 4 mg/L each of the ground water by ORC can support biodegradation of benzene and toluene dissolved in ground water. Such concentrations are typical of those encountered at sites contaminated with petroleum hydrocarbons; therefore, these results suggest that there is promise for ORC to enhance in situ biodegradation of BTKX contaminants at such sites using passive (nonpumping) systems to contact the contaminated ground water with the oxygen source.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号