首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
地球物理   1篇
地质学   5篇
  2021年   1篇
  2015年   1篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
排序方式: 共有6条查询结果,搜索用时 187 毫秒
1
1.
Kijko  A.  Retief  S. J. P.  Graham  G. 《Natural Hazards》2002,26(2):175-201
In this part of our study the probabilistic seismic hazard analysis (PSHA) for Tulbagh was performed. The applied procedure is parametric and consists essentially of two steps. The first step is applicable to the area in the vicinity of Tulbagh and requires an estimation of the area-specific parameters, which, in this case, is the mean seismic activity rate, , the Gutenberg-Richter parameter, b, and the maximum regional magnitude, mmax. The second step is applicable to the Tulbagh site, and consists of parameters of distribution of amplitude of the selected ground motion parameter. The current application of the procedure provides an assessment of the PSHA in terms of peak ground acceleration (PGA) and spectral acceleration (SA). The procedure permits the combination of both historical and instrumental data. The historical part of the catalogue only contains the strongest events, whereas the complete part can be divided into several subcatalogues, each assumed complete above a specified threshold of magnitude. In the analysis, the uncertainty in the determination of the earthquake was taken into account by incorporation of the concept of `apparent magnitude'. The PSHA technique has been developed specifically for the estimation of seismic hazard at individual sites without the subjective judgement involved in the definition of seismic source zones, when the specific active faults have not been mapped or identified, and where the causes of seismicity are not well understood. The results of the hazard assessment are expressed as probabilities that specified values of PGA will be exceeded during the chosen time intervals, and similarly for the spectral accelerations. A worst case scenario sketches the possibility of a maximum PGA of 0.30g. The results of the hazard assessment can be used as input to a seismic risk assessment.  相似文献   
2.
ISO2394:2015 contains a new informative Annex D on “Reliability of Geotechnical Structures”. The emphasis in Annex D is to identify and characterize critical elements of the geotechnical reliability-based design process, while respecting the diversity of geotechnical engineering practice. This paper highlights the main features of Annex D and gaps for future work.  相似文献   
3.
Kijko  A.  Retief  S. J. P.  Graham  G. 《Natural Hazards》2003,30(1):25-41
This is the second part of our study on the assessment of seismic hazard and seismic risk for Tulbagh, the settlement, located about 90 km N-E from Cape Town, where the strongest and most damaging earthquake known in the existing earthquake history of South Africa took place. This part of our study, which can be read independently from Part I, concentrates on the probabilistic seismic risk analysis (PSRA) forTulbagh. The work begins with an introduction and a historical perspective on the estimation of seismic damage to buildings. The methodology for the estimation of expected damage from a probabilistic point of view is then presented. The work closes with an application of the described methodology to a site in the vicinity of Tulbagh.  相似文献   
4.

The role of economic sectoral structure in regional growth and development is widely acknowledged. However, there has been scarce reflection on its role as a policy instrument, particularly for peripheral regions. In reaction, this paper investigates the role of economic sectoral structure as a policy instrument towards more resilient peripheral regions. Through a multiple country policy analysis, the paper determines to what degree economic sectoral structure is reflected in regional development policies of 18 countries with predominantly rural characteristics and lagging regions. Moreover, the role of economic sectoral structure towards more resilient regions is quantified and measured for a specific peripheral region case in South Africa as developing country exhibiting poor economic resilience. The paper highlights related variety as a key ingredient for a region to reach a state of dynamic stability between adaptation and adaptability towards enhanced long-term resilience capacity of the peripheral region. The research concludes that policy focus should support the maintenance of the sectors and industries of comparative advantage on the regional scale, but strongly focus on sectoral comparative advantage within the national scale (if present) to establish a more robust region. This will establish and strengthen the identified peripheral growth centres as centres of national competitiveness and specialisation. Primary policy actions as emanated from the literature and the multiple country policy analysis will promote more efficient sectoral composition as key towards more resilient peripheral regions. It is acknowledged that these policy actions must be informed by a detailed regional economic analysis for different peripheral regions to determine inherent and latent economic potential and link with interdependent industries. This paper will highlight that regional policy should become more explicit by exploiting the role of economic and natural resources as growth engines for the peripheral regional economy in a more effective way through a multi-centred territorial structure.

  相似文献   
5.
—?The procedure developed by Kijko and Sellevoll (1989, 1992) and Kijko and Graham (1998, 1999) is used to estimate seismic hazard parameters in north Algeria. The area-specific seismic hazard parameters that were calculated consist of the b value of the Gutenberg–Richter frequency–magnitude relation, the activity rate λ(M) for events above the magnitude M, and the maximum regional magnitude M max. These parameters were calculated for each of the six seismogenic zones of north Algeria. The site-specific seismic hazard was calculated in terms of the maximum possible PGA at hypothetical engineering structures (HES), situated in each of the six seismogenic zones with coordinates corresponding with those of the six most industrial and populated cities in Algeria.  相似文献   
6.
Mäntyniemi  P.  Mârza  V.  Kijko  A.  Retief  P. 《Natural Hazards》2003,29(3):371-385
In this paper we apply a probabilistic methodology to map specific seismic hazard induced by the Vrancea Seismogenic Zone, which represents the uttermost earthquake danger to Romania as well as its surroundings. The procedure is especially suitable for the estimation of seismic hazard at an individual site, and seismic hazard maps can be created by applying it repeatedly to grid points covering larger areas. It allows the use of earthquake catalogues with incompletely reported historical and complete instrumental parts. When applying themethodology, special attention was given to the effect of hypocentral depth and the variation of attenuation according to azimuth. Hazard maps specifying a 10% chance of exceedance of the given peak ground acceleration value for an exposure time of 50 years were prepared for three different characteristic depths of earthquakes in the Vrancea area. These maps represent a new realistic contribution to the mitigation of the earthquake risk caused by the Vrancea Seismogenic Zone in terms of: (1) input data (consistent, reliable, and the most complete earthquake catalogue), (2) appropriate and specific attenuation relationships (considering both azimuthal and depth effects); and (3) a new and versatile methodology.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号