首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
地质学   2篇
  2019年   2篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
The engineering applications of energy piles, geological radioactive waste disposals, and mining wells of geothermal and petroleum are usually associated with strong coupled behaviour of consolidation and heat flow. This paper aims to present an efficient precise integration technique (PIT) for the analysis of such behaviour within layered saturated soils surrounding cylindrical heat sources (ie, with a cross section as a point, ring, or disc). Each soil layer, together with its embedded part of heat source, is divided into 2N layer elements with equal thickness. Then any pair of adjacent two layer elements are merged into a heat source on the interface. With the aid of Taylor series expansion and recurrence formula for adjacent layer elements combination, such problems can be solved by means of an improved PIT. Typical examples are performed to examine the effects of heat source type and soils layered properties on the coupled consolidation and heat flow responses. The elevation of the clay surface increases with time because of thermal expansion and reaches a peak value before showing a tendency of getting stabilised because of the dissipation of pore pressure becoming dominant. Such a peak cannot be achieved in sand case because of no accumulation of pore pressure. The influencing area of the heat source was found to be limited to near the source. These quantitative results serve as good verification of the presented technique, which proves to be remarkably efficient and several orders more accurate than traditional numerical techniques in that it ideally reaches the accuracy limit of the hardware of the computers used.  相似文献   
2.
Chen  Ren-Peng  Zhu  Shu  Hong  Peng-Yun  Cheng  Wei  Cui  Yu-Jun 《Acta Geotechnica》2019,14(2):279-293

This paper presents a two-surface plasticity model for describing some important features of saturated clay under cyclic loading conditions, such as closed hysteresis loops, cyclic shakedown and degradation, and different stress–strain relations for two-way loading. The model, namely ACC-2-C, is based on the elastoplastic model ACC-2 (an adapted Modified Cam Clay model with two yield surfaces) developed by Hong et al. (Acta Geotech 11(4):871–885, 2015). The small-strain nonlinearity concept is adopted to achieve the nonlinear characteristics of clay during unloading–loading stage. The new hardening law related to accumulated deviatoric plastic strain is proposed for the inner surface to describe the cyclic shakedown and degradation. Following the advantages of the ACC-2 model, the constitutive equations are simply formulated based on the consistency condition for the inner yield surface. The model is conveniently implemented in a finite element code using a stress integration scheme similar to the Modified Cam Clay model. The simulation results are highly consistent with experimental data from drained and undrained isotropic cyclic triaxial tests in normally consolidated saturated clay under both one-way and two-way loadings.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号