首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   2篇
大气科学   1篇
地球物理   8篇
地质学   8篇
海洋学   7篇
天文学   1篇
  2021年   2篇
  2020年   1篇
  2018年   2篇
  2015年   4篇
  2009年   2篇
  2007年   2篇
  2004年   3篇
  2002年   1篇
  2001年   1篇
  1996年   4篇
  1993年   1篇
  1989年   1篇
  1984年   1篇
排序方式: 共有25条查询结果,搜索用时 15 毫秒
1.
In order to assess in fish the maternal transfer of alkylphenolic compounds to the progeny, the identification and quantification of the labelled compounds present in oocytes and embryos was conducted after dietary exposure of mature female mosquitofish to 14C-4n-nonylphenol during vitellogenesis and embryogenesis respectively. Radioactivity found in bile and liver extracts accounted for 0.9-0.6 and 0.2-0.1% of ingested radioactivity for females exposed during vitellogenesis and embryogenesis respectively. The amount of extractable radioactivity present in oocytes and embryos was 0.19 and 0.07% of the ingested dose respectively. The radio-HPLC profiles obtained from bile, liver, oocyte and embryo extracts were similar. They showed the presence of 4n-NP-glucuronide as the major metabolite and traces of unchanged 4n-NP. The other metabolites corresponded to 8-hydroxynonylphenol, 9-(4-hydroxyphenyl)-nonanoic acid and para-hydroxybenzoic acid which is the final product of the alkyl chain oxidation. Our results indicate that exposure of ovoviviparous female fish to 4-NP during vitellogenesis and embryogenesis leads to the contamination of the progeny by 4-NP and its metabolites.  相似文献   
2.
3.
4.
Active tendon control of cable-stayed bridges subject to a vertical sinusoidal force is experimentally and analytically studied. Emphasis is placed on the effects of linear and non-linear internal resonances on the control (due to the presence of the cable vibration). A simple cable-supported cantilever beam is used as a model. It is found that active tendon control is very effective in vertical girder motion with small cable vibration (girder dominated motion), whereas it is not effective in vertical girder motion with large cable vibration (cable dominated motion). Analytical prediction is very satisfactory except for the latter case.  相似文献   
5.
Abstract— A meteor spectrum was recorded serendipitously at the European Southern Obrervatory (ESO) Very Large Telescope (VLT) during a long exposure in long‐slit spectroscopic mode with FORS1. The ?8 magnitude fireball crossed the narrow 1Î × 7î slit during the observation of a high z supernova in normal service mode operation on May 12, 2002. The spectrum covered the range of 637–1050 nm, where the meteor's air plasma emissions from N2, N, and O dominate. Carbon atom emission was not detected in the relatively unexplored wavelength range above 900 nm, but the observed upper limit was only 3 sigma less than expected from the dissociation of atmospheric CO2. The meteor trail was resolved along the slit, and the emission had a Gaussian distribution with a dimension of FWHM = 7.0 (±0.4) * sin(α) * H (km)/90 m, where α is the unknown angle between the orientation of the meteor path and slit and H the assumed altitude of the meteor in km. To our knowledge, this is the first observation of a spatially resolved spectrum across a meteor trail. Unlike model predictions, the plasma excitation temperature varied only from about 4,300 to 4,365 K across the trail, based on the ratio of atomic and molecular nitrogen emissions. Unfortunately, we conclude that this was because the meteor at 100 km altitude was out of focus.  相似文献   
6.
Numerical simulations using a physiologically-based model of marine ecosystem size spectrum are conducted to study the influence of primary production and temperature on energy flux through marine ecosystems. In stable environmental conditions, the model converges toward a stationary linear log–log size-spectrum. In very productive ecosystems, the model predicts that small size classes are depleted by predation, leading to a curved size-spectrum.It is shown that the absolute level of primary production does not affect the slope of the stationary size-spectrum but has a nonlinear effect on its intercept and hence on the total biomass of consumer organisms (the carrying capacity). Three domains are distinguished: at low primary production, total biomass is independent from production changes because loss processes dominate dissipative processes (biological work); at high production, ecosystem biomass is proportional to primary production because dissipation dominates losses; an intermediate transition domain characterizes mid-production ecosystems. Our results enlighten the paradox of the very high ecosystem biomass/primary production ratios which are observed in poor oceanic regions. Thus, maximal dissipation (least action and low ecosystem biomass/primary production ratios) is reached at high primary production levels when the ecosystem is efficient in transferring energy from small sizes to large sizes. Conversely, least dissipation (most action and high ecosystem biomass/primary production ratios) characterizes the simulated ecosystem at low primary production levels when it is not efficient in dissipating energy.Increasing temperature causes enhanced predation mortality and decreases the intercept of the stationary size spectrum, i.e., the total ecosystem biomass. Total biomass varies as the inverse of the Arrhenius coefficient in the loss domain. This approximation is no longer true in the dissipation domain where nonlinear dissipation processes dominate over linear loss processes. Our results suggest that in a global warming context, at constant primary production, a 2–4 °C warming would lead to a 20–43% decrease of ecosystem biomass in oligotrophic regions and to a 15–32% decrease of biomass in eutrophic regions.Oscillations of primary production or temperature induce waves which propagate along the size-spectrum and which amplify until a “resonant range” which depends on the period of the environmental oscillations. Small organisms oscillate in phase with producers and are bottom-up controlled by primary production oscillations. In the “resonant range”, prey and predators oscillate out of phase with alternating periods of top-down and bottom-up controls. Large organisms are not influenced by bottom-up effects of high frequency phytoplankton variability or by oscillations of temperature.  相似文献   
7.
Interannual coupled Rossby waves in the extratropical Indian Ocean propagate westward in covarying pycnocline depth, sea surface temperature, and meridional surface wind anomalies from the west coast of Australia between 15°S and 35°S, taking 3–4 years to transit the interior ocean to Madagascar. In the interior subtropical gyre, where the tuna longline catch (TLC) mainly concerns two species (albacore and bigeye), these waves have been observed to affect year-to-year changes in catch, with wave crests (troughs) in the main pycnocline associated with high (low) TLC anomalies. This suggested that tuna longline catch is associated with the entrainment of nutrient-rich pycnocline water into the photic zone and a subsequent increase in primary productivity there. Here, this hypothesis is examined within the context of SeaWiFS chlorophyll concentration (CC). We find the situation the opposite of that expected, with wave crests (troughs) in the main pycnocline associated with low (high) CC anomalies averaged over the photic zone. These results are shown to be consistent with a model relating the anomalous CC tendency to upper-layer divergence in the wave, not unlike that relating surface slicks to upper-layer divergence in internal gravity waves. Thus, the connection between interannual coupled Rossby waves and TLC in the interior subtropical gyre does not appear to derive from wave-induced modulation of the pelagic food web. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
8.
9.
10.
The dynamic response of a wind turbine on monopile is studied under horizontal and vertical earthquake excitations. The analyses are carried out using the finite element program SAP2000. The finite element model of the structure is verified against the results of shake table tests, and the earthquake response of the soil model is verified against analytical solutions of the steady‐state response of homogeneous strata. The focus of the analyses in this paper is the vertical earthquake response of wind turbines including the soil‐structure interaction effects. The analyses are carried out for both a non‐homogeneous stratum and a deep soil using the three‐step method. In addition, a procedure is implemented which allows one to perform coupled soil‐structure interaction analyses by properly tuning the damping in the tower structure. The analyses show amplification of the ground surface acceleration to the top of the tower by a factor of two. These accelerations are capable of causing damage in the turbine and the tower structure, or malfunctioning of the turbine after the earthquake; therefore, vertical earthquake excitation is considered a potential critical loading in design of wind turbines even in low‐to‐moderate seismic areas. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号