首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
大气科学   1篇
地质学   5篇
天文学   1篇
  2020年   1篇
  2017年   2篇
  2016年   1篇
  2013年   2篇
  1982年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
Pore solution salinity has important bearing on engineering behavior of marine sediments as they influence electrochemical stress (AR) and differential osmotic stress (?π) of the salt-enriched clays. The electrochemical stress (AR) is contributed by van der Waals (A) attraction and diffuse ion layer repulsion (R), while the differential osmotic stress (?π) is governed by the differences in dissolved salt concentrations in solutions separated by osmotic membrane. The paper examines the relative influence of differential osmotic stress (Δπ) and electrochemical stress (AR) on the consolidation behavior of slurry consolidated kaolinite specimens, which are known to be encountered in recent alluvial marine sediments. Methods are described to evaluate the magnitudes of these physico-chemical components and their incorporation in true effective stress. Results of the study demonstrate that differential osmotic stress finitely contributes to true effective stress. The contribution from differential osmotic stress enables kaolinite specimens to sustain larger void ratio during consolidation.  相似文献   
2.

Potential changes in future climate in the Texas Plains region were investigated in the context of agriculture by analyzing three climate model projections under the A2 climate scenario (medium–high emission scenario). Spatially downscaled historic (1971–2000) and future (2041–2070) climate datasets (rainfall and temperature) were downloaded from the North American Regional Climate Change Assessment Program (NARCCAP). Climate variables predicted by three regional climate models (RCMs) namely the Regional Climate Model Version3–Geophysical Fluid Dynamics Laboratory (RCM3-GFDL), Regional Climate Model Version3–Third Generation Coupled Global Climate Model (RCM3-CGCM3), and Canadian Regional Climate Model–Community Climate System Model (CRCM-CCSM) were evaluated in this study. Gaussian and Gamma distribution mapping techniques were employed to remove the bias in temperature and rainfall data, respectively. Both the minimum and maximum temperatures across the study region in the future showed an upward trend, with the temperatures increasing in the range of 1.9 to 2.9 °C and 2.0 to 3.2 °C, respectively. All three climate models predicted a decline in rainfall within a range of 30 to 127 mm in majority of counties across the study region. In addition, they predicted an increase in the intensity of extreme rainfall events in the future. The frost-free season as predicted by the three models showed an increase by 2.6–3.4 weeks across the region, and the number of frost days declined by 17.9 to 30 %. Overall, these projections indicate considerable changes to the climate in the Texas Plains region in the future, and these changes could potentially impact agriculture in this region.

  相似文献   
3.
Wilson  Matthew  Lane  Sandi  Mohan  Raghuveer  Sugg  Margaret 《Natural Hazards》2020,100(3):1013-1036
Natural Hazards - As the frequency of natural disasters increases, there has been an emphasis on vulnerability index creation studies. In this study, we test the validity of vulnerability indices...  相似文献   
4.
Potential curves for theB andX states of I2, NS and PS have been obtained by Rydberg-Klein-Rees (RKR) method. From these RKR potentials, Franck-Condon factors (FCFs) lot the above band systems have been calculated using the best available molecular constants, tested for accuracy on the electronic transition moment (ETM)-r-centroid curve in the case of I2 and used in the study of observed abnormal intensity distribution in some bands of NS. A brief outline of the method used in the calculations of the FCFs is given.  相似文献   
5.
Compacted expansive clays swell due to crystalline swelling and osmotic/double layer swelling mechanisms. Crystalline swelling is driven by adsorption of water molecules at clay particle surfaces that occurs at inter-layer separations of 10–22 Å. Diffuse double layer swelling occurs at inter-layer separations >22 Å. The tendency of compacted clay to develop osmotic or double layer swelling reduces with increase in solute concentration in bulk solution. This study examines the consequence of increase in solute concentration in bulk solution on the relative magnitudes of the two swelling modes. The objective is achieved by inundating compacted expansive clay specimens with distilled water and sodium chloride solutions in free-swell oedometer tests and comparing the experimental swell with predictions from Van’t Hoff equation. The results of the study indicate that swell potential of compacted expansive clay specimens wetted with relatively saline (0.4, 1 and 4 M sodium chloride) solutions are satisfied by crystalline swelling alone. Comparatively, compacted clay specimens inundated with less saline solutions (0.005–0.1 M sodium chloride) require both crystalline and osmotic swelling to satiate the swell potential.  相似文献   
6.
Assessment of chemistry of groundwater infiltrated by pit-toilet leachate and contaminant removal by vadose zone form the focus of this study. The study area is Mulbagal Town in Karnataka State, India. Groundwater level measurements and estimation of unsaturated permeability indicated that the leachate recharged the groundwater inside the town at the rate of 1 m/day. The average nitrate concentration of groundwater inside the town (148 mg/L) was three times larger than the permissible limit (45 mg/L), while the average nitrate concentration of groundwater outside the town (30 mg/L) was below the permissible limit. The groundwater inside the town exhibited E. coli contamination, while groundwater outside the town was free of pathogen contamination. Infiltration of alkalis (Na+, K+) and strong acids (Cl?, SO4 2?) caused the mixed Ca–Mg–Cl type (60 %) and Na–Cl type (28 %) facies to predominate groundwater inside the town, while, Ca–HCO3 (35 %), mixed Ca–Mg–Cl type (35 %) and mixed Ca–Na–HCO3 type (28 %) facies predominated groundwater outside/periphery of town. Reductions in E. coli and nitrate concentrations with vadose zone thickness indicated its participation in contaminant removal. A 4-m thickness of unsaturated sand + soft, disintegrated weathered rock deposit facilitates the removal of 1 log of E. coli pathogen. The anoxic conditions prevailing in the deeper layers of the vadose zone (>19 m thickness) favor denitrification resulting in lower nitrate concentrations (28–96 mg/L) in deeper water tables (located at depths of ?29 to ?39 m).  相似文献   
7.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号