首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
  国内免费   1篇
大气科学   1篇
地质学   1篇
  2020年   1篇
  2016年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
This paper investigated the geotechnical properties of smectite-rich shale, and its implications as foundation material. Ten expansive shale samples were collected from foundation materials at Akpugo in Nkanu West L.G.A. of Enugu State, southeast Nigeria. Samples were subjected to grading, Atterberg limits-cum-compaction tests, slake durability, specific gravity, permeability, undrained triaxial tests and x-ray diffraction scan. Fines and sand contents of the soil samples range from 51–97% and 3–49% respectively. Liquid limit, plastic limit and plasticity index have average values of 60.7, 19.1 and 43.3% respectively. Linear shrinkage and free swell showed average of 16.3% and 76%. These results are indicative of predominant clay soil with high plasticity, compressibility and water holding capacity. XRD scan established presence of smectite and illite clay minerals, confirming soil high plasticity, capable of causing instability in foundation soil. The shale achieved maximum dry density range between 1.79 and 1.94 kg/m3 at optimum moisture content range of 6.9–12.8%, indicating poor to fair foundation materials. The shale cohesion ranges from 15 to 30 kPa while the angle of friction ranges between 10° and 18°, signifying an average strength soil material. Samples slake durability index and specific gravity fall within 24–55% and 2.50–2.58 respectively, suggesting non-durable and weak soil. Permeability of the samples ranges between 7.36 ×10?6 and 4.77 ×10?8 cm/s which suggested low drainage capable of causing water-log at sites. Therefore, the shale could be generally classified as poor to fair foundation material, which on moisture influx experience reduction in strength due to deterioration of its constituent minerals, especially clay and cement materials during the lifespan of engineering structures. Authors therefore recommend modification of foundation soil, appropriate foundation design and good drainage control as ways of improving stability of engineering structures underlain by expansive shale.  相似文献   
2.
The Antarctic,including the continent of Antarctica and the Southern Ocean,is a critically important part of the Earth system.Research in Antarctic meteorology and climate has always been a challenging endeavor.Studying and predicting weather patterns in the Antarctic are important for understanding their role in local-to-global processes and facilitating field studies and logistical operations in the Antarctic(e.g.,Walsh et al.,2018).Studies of climate change in the Antarctic are comparatively neglected compared to those of the Arctic.However,significant climate changes have occurred in the Antarctic in the past several decades,i.e.,a strong warming over the Antarctic Peninsula even with a recent minor cooling,a deepening of the Amundsen Sea low,a rapid warming of the upper ocean north of the circumpolar current,an increase of Antarctic sea ice since the late 1970s followed by a recent rapid decrease,and an accelerated ice loss from the Antarctic ice shelf/sheet since the late 1970s(e.g.,Turner et al.,2005;Raphael et al.,2016;Sallée,2018;Parkinson,2019;Rignot et al.,2019).Investigating recent climate change in the Antarctic and the underlying mechanisms are important for predicting future climate change and providing information to policymakers.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号