首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   0篇
测绘学   6篇
地质学   10篇
天文学   7篇
  2017年   1篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2011年   2篇
  2010年   2篇
  2009年   3篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
  2001年   1篇
  1999年   1篇
  1997年   2篇
  1985年   1篇
  1983年   1篇
  1980年   1篇
排序方式: 共有23条查询结果,搜索用时 15 毫秒
1.
Vishal  V.  Siddique  T.  Purohit  Rohan  Phophliya  Mohit K.  Pradhan  S. P. 《Natural Hazards》2017,85(1):487-503

A massive disaster occurred in June 2013 in Kedarnath, India, due to cloudburst and extremely heavy rain along the Chorabari glacier. The resulting flash floods further aggravated the instability of natural and hill cut slopes at different places on the downstream side. The village Rambara that existed in close proximity of Kedarnath was swept away under flow of debris and water. The immediate surrounding area, which housed over a hundred and fifty shops and hotels, was completely washed away leaving no trace of civilization. This calamity in Uttarakhand is considered as India’s worst natural disasters after the tsunami in December 2004. On the downstream of the affected areas lie other pilgrim destinations that witness innumerable footfalls every year. Investigation of the health of the slopes on the routes to these destinations is therefore very important to ensure minimal damage to humans and machinery. The Himalayan terrain is a tectonically active mountain belt, having a large number of unstable natural and road cut slopes. Such slopes with rugged topography lie in the high seismic vulnerability zone. Further, the instability is aggravated by natural and anthropogenic activities increasing at a rapid and uncontrollable rate. In the light of the Kedarnath tragedy, more advanced research is being conducted along the National Highways to monitor and prevent slope/structure failures. This study was conducted to evaluate the hazard potential along National Highway-58, near Saknidhar village of Devprayag district by analysing rockfall using hazard rating systems and numerical simulation. Rockfall hazard rating systems were applied to evaluate the conditions of the slopes and to identify the associated risks. Based on the field and laboratory analyses, the parameters required for numerical models were determined. The bounce height, roll-out distance, kinetic energy and speed of the detached blocks were determined by using a competent rockfall simulator. The results obtained were used to identify rockfall risk in the region. Optimization strategies were applied during investigation by modifying the slope angle, ditch width and ditch angle to assess the possibility of a hazard to occur in different scenarios. The simulation studies revealed that an increasing slope angle could significantly increase the kinetic energy of the rock blocks. However, an increase in the ditch angle and the ditch width reduces the energy of moving blocks. The maximum bounce height above the slope varied from 0.003 m to 0.8 m for 10-kg blocks, whereas the maximum velocity and the maximum kinetic energy under such circumstances were 7.882 m/s and 379.89 J, respectively. The barrier capacity was found to be 233.18 J for 10-kg falling blocks at a height of 10.02 m. From the optimization studies, it was found that the risk can be reduced by up to 13 % if the slope of 70° has a ditch angle of 15° while on a flat ditch, the maximum risk will be at an angle of 65°. If the ditch angle is increased, the vertical component of the falling blocks is more effective than that in case of a flat ditch. These optimization studies lay foundation for advanced research for mitigation of rockfall hazards in similar potential areas.

  相似文献   
2.
Abstract

A methodology has been developed to normalize the multi‐temporal NDVIs derived from NOAA AVHRR data for the atmospheric effects to the least affected NDVI for development of spectral and spectrometeorological (or spectromet, for short) crop yield models. This is found to reduce the noise in NDVI due to varying atmospheric conditions from season to season and improve the predictability of statistical multiple linear regression yield models. The spectromet yield models for mustard crop in the nine districts of Rajasthan state haven been developed based on normalized NDVIs and have been validated by comparing the predicted yields with the estimated from crop cutting experiments by the state Development of Agriculture.  相似文献   
3.
4.
Re-examination of the outcrop of conjugate of strike-slip faults mapped by Roday et al. (1989) near forest rest house at Hirapur reveals that the main dextral strike-slip fault that strikes N35°E and is a manifestation of the earliest NE-SW trending subhorizontal σ1 that produced extensional reef system in the Bundelkhand massif. Although the change in the stress system though 90° rotation of the principal compressive stress σ1 and σ3 (with σ2 maintaining near vertically) is correct, another point of interest is that the σ1 for the system of faults bisects the obtuse angle between the two sets and not an acute one as required by the brittle failure criterion. The sinistral strike-slip faults were probably formed by rejuvenation of the initial dextral strike-slip faults that were generated when the maximum principal compressive stress was oriented NS. The reversal of fault displacement is seen on all scales in the Bundelkhand massif. The dextral strike-slip fault related to the late stress system was preferentially produced along pre-existing tensile fractures that were generated under NE-SW directed subhorizontal σ1. Some of these fractures were converted into sinistral strike-slip faults under NS directed maximum principal compression acting subhorizontally.  相似文献   
5.
We probe the spectral hardening of solar flares emission in view of associated solar proton events (SEPs) at earth and coronal mass ejection (CME) acceleration as a consequence. In this investigation we undertake 60 SEPs of the Solar Cycle 23 along with associated Solar Flares and CMEs. We employ the X-ray emission in Solar flares observed by Reuven Ramaty Higly Energy Solar Spectroscopic Imager (RHESSI) in order to estimate flare plasma parameters. Further, we employ the observations from Geo-stationary Operational Environmental Satellites (GOES) and Large Angle and Spectrometric Coronagraph (LASCO), for SEPs and CMEs parameter estimation respectively. We report a good association of soft-hard-harder (SHH) spectral behavior of Flares with occurrence of Solar Proton Events for 16 Events (observed by RHESSI associated with protons). In addition, we have found a good correlation (R=0.71) in SEPs spectral hardening and CME velocity. We conclude that the Protons as well as CMEs gets accelerated at the Flare site and travel all the way in interplanetary space and then by re-acceleration in interplanetary space CMEs produce Geomagnetic Storms in geospace. This seems to be a statistically significant mechanism of the SEPs and initial CME acceleration in addition to the standard scenario of SEP acceleration at the shock front of CMEs.  相似文献   
6.
Fry method enables rapid estimate of finite strain from deformed aggregates such as clastic grains, fossil colonies, oolitic or pisolitic aggregates, prophyroblastic minerals or phenocrysts. It has an advantage over the other methods of finite strain analysis in its very quality of enabling rapid estimation with a reasonable degree of accuracy. Details of the software to prepare a plot using Fry method are outlined. This program has an advantage over other computer based programs on the world wide web in its aesthetic getup, small size, user friendliness and a help file.  相似文献   
7.
The purpose of this work is to investigate the effect of magnetic activity on ionospheric time delay at low latitude Station Bhopal (geom. lat. 23.2°N, geom. long. 77.6°E) using dual frequency (1575.42 and 1227.60 MHz) GPS measurements. Data from GSV4004A GPS Ionospheric Scintillation and TEC monitor (GISTM) have been chosen to study these effects. This paper presents the results of ionospheric time delay during quiet and disturbed days for the year 2005. Results show that maximum delay is observed during quiet days in equinoxial month while the delays of disturbed period are observed during the months of winter. We also study the ionospheric time delay during magnetic storm conditions for the same period. Results do not show any clear relationship either with the magnitude of the geomagnetic storm or with the main phase onset (MPO) of the storm. But most of the maximum ionospheric time delay variations are observed before the main phase onset (MPO) or sudden storm commencement (SSC) as compared to storm days.  相似文献   
8.
The Bhuj earthquake (26 January 2001) in India and the Ghori earthquake (8 October 2005) in Pakistan, both occurred close to the Indian-Iranian plate boundary related to the activity along the intercontinental Chaman transform fault. It is suggested that the seismic activity along NNW — NNE trending weak zones or faults is more intense in the sub-continent than along the WNW trending zones. Since the stress along the former is less compressive but more of the shear or translational type. The devastative Koyna (1967) and Latur (1993) earthquakes both occurred along faults or weak zones that were close to the meridional rather than the equatorial trend. The Indian plate is moving to the north or NNE or NNW, along a rotational trajectory and hence the force tends to be more compressive along the equatorial weak zones. In contrast, it tends to be less compressive and more of the shear or translational along the weak zones that are close to meridional trend. The seismic activity is therefore more intense along the weak zones with NNW to NNE trend than along the ENE to EW trending zones.  相似文献   
9.
Groundwater is one of the important source of water supply to meet the requirements of National Capital Territory (NCT) of Delhi, India which is a fast developing urban conglomeration. An assessment of dynamic groundwater resources of NCT Delhi has been attempted based on the methodology known as Ground Water Resources Estimation Methodology—1997. The methodology includes assessment of annual replenishable groundwater resources using water level fluctuation approach and empirical norms, estimation of the annual quantity of groundwater withdrawal and categorization of the assessment units based on the status of groundwater utilization and water level trend. Annual replenishable groundwater resources of NCT Delhi is about 297 million cubic meter (mcm) while the annual groundwater draft is about 480 mcm. This is because of over-exploitation of replenishable resources in seven out of nine districts of the Capital Territory. Based on the assessment of dynamic groundwater resources, a broad groundwater management plan has been proposed in this paper. This include augmentation of groundwater resources through rain water harvesting schemes to be implemented on a large scale, regulation on groundwater withdrawal in vulnerable areas, development of Yamuna flood plain aquifer and declaration of Delhi ridge as groundwater sanctuary.  相似文献   
10.
 Doon Valley is surrounded by two major river systems (Ganga and Yamuna) on either side, with a water divide passing nearly across the centre of the valley, and is sandwiched between two mountain ranges in the fragile ecological systems of the Himalayan foothills. In total 398 soil samples were collected from the valley in a grid pattern (∼1 sample per 2 km2) and investigated for their heavy metal (Cr, Cu, Ni, Pb and Zn) abundances that are environmentally sensitive. Comparison of the heavy metal abundances with the contamination threshold values (CTV) revealed that most of these elemental abundances in Doon Valley soils fall well within the range of the uncontaminated to slightly contaminated category. In the case of Cr and Ni, a sizeable number of samples exceeded the CTV (250 and 100 mg kg–1 respectively) with an overall background value of 109 and 52 mg kg–1 respectively. Sites of high Cr and Ni mostly occur in the Ganga Catchment (GC) sector that includes even relatively undisturbed forestland. The source of this contamination is attributed to geological factors which indicate contribution from the mafic volcanics of the Lesser Himalaya. This is also consistent with the distribution pattern of Mn and Fe, though their abundance levels are not alarming. The background concentration of Pb is low (22 mg kg–1) in Doon Valley soils; however, signs of gradual Pb contamination are palpable in and around the centre of the Dehra Dun city and along the highways. Aluminium normalized heavy metal ratios were found to exhibit narrow variability in the case of Cu, Ni and Cr and had good correlation with Al, indicating their affinity and association with the clay minerals. On the other hand, Pb and Zn seem to be associated with non-silicate sources. Received: 7 January 2000 · Accepted: 30 July 2000  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号