首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
地质学   8篇
  2017年   1篇
  2015年   1篇
  2011年   1篇
  2009年   3篇
  2008年   1篇
  2002年   1篇
排序方式: 共有8条查询结果,搜索用时 46 毫秒
1
1.
The Chahmir zinc–lead deposit (1.5 Mt @ 6 % Zn + 2 % Pb) in Central Iran is one among several sedimentary-exhalative Zn–Pb deposits in the Early Cambrian Zarigan–Chahmir basin (e.g., Koushk, Darreh-Dehu, and Zarigan). The deposit is hosted by carbonaceous, fine-grained black siltstones, and shales interlayered with volcaniclastic sandstone beds. It corresponds to the upper part of the Early Cambrian volcano-sedimentary sequence (ECVSS), which was deposited on the Posht-e-Badam Block during back-arc rifting of the continental margin of Central Iran. Based on crosscutting relationships, mineralogy, and texture of sulfide mineralization, four different facies can be distinguished: stockwork (feeder zone), massive ore, bedded ore, and distal facies (exhalites with barite). Silicification, carbonatization, sericitization, and chloritization are the main wall-rock alteration styles; alteration intensity increases toward the proximal feeder zone. Fluid inclusion microthermometry was carried out on quartz associated with sulfides of the massive ore. Homogenization temperatures are in the range of 170–226 °C, and salinity is around 9 wt% NaCl eq. The size distribution of pyrite framboids of the bedded ore facies suggests anoxic to locally suboxic event for the host basin. δ34S(V-CDT) values of pyrite, sphalerite, and galena range from +10.9 to +29.8?‰. The highest δ34S values correspond to the bedded ore (+28.6 to +29.8?‰), and the lowest to the massive ore (+10.9 to +14.7?‰) and the feeder zone (+11.3 and +12.1?‰). The overall range of δ34S is consistent with a sedimentary environment where sulfide sulfur was derived from two sources. One of them was corresponding to early ore-stage sulfides in bedded ore and distal facies, consistent with bacterial reduction from coeval seawater sulfate in a closed or semiclosed basin. However, the δ34S values of late ore-stage sulfides, observed mainly in massive ore, interpreted as a hydrothermal sulfur component, leached from the lower part of the ECVSS. Sulfur isotopes, along with the sedimentological, textural, mineralogical, fluid inclusion, and geochemical characteristics of the Chahmir deposit are in agreement with a vent-proximal (Selwyn type) SEDEX ore deposit model.  相似文献   
2.
The El Cobre deposit is located in eastern Cuba within the volcanosedimentary sequence of the Sierra Maestra Paleogene arc. The deposit is hosted by tholeiitic basalts, andesites and tuffs and comprises thick stratiform barite and anhydrite bodies, three stratabound disseminated up to massive sulphide bodies produced by silicification and sulphidation of limestones or sulphates, an anhydrite stockwork and a siliceous stockwork, grading downwards to quartz veins. Sulphides are mainly pyrite, chalcopyrite and sphalerite; gold occurs in the stratabound ores. Fluid inclusions measured in sphalerite, quartz, anhydrite and calcite show salinities between 2.3 and 5.7 wt% NaCl eq. and homogenisation temperatures between 177 and 300°C. Sulphides from the stratabound mineralisation display δ 34S values of 0‰ to +6.0‰, whilst those from the feeder zone lie between −1.4‰ and +7.3‰. Sulphides show an intra-grain sulphur isotope zonation of about 2‰; usually, δ 34S values increase towards the rims. Sulphate sulphur has δ 34S in the range of +17‰ to +21‰, except two samples with values of +5.9‰ and +7.7‰. Sulphur isotope data indicate that the thermochemical reduction of sulphate from a hydrothermal fluid of seawater origin was the main source of sulphide sulphur and that most of the sulphates precipitated by heating of seawater. The structure of the deposit, mineralogy, fluid inclusion and isotope data suggest that the deposit formed from seawater-derived fluids with probably minor supply of magmatic fluids.  相似文献   
3.
In the San Marcos ranges of Cuatrociénegas, NE Mexico, several sediment-hosted copper deposits occur within the boundary between the Coahuila Block, a basement high mostly granitic in composition and Late Paleozoic to Triassic in age, and the Mesozoic Sabinas rift basin. This boundary is outlined by the regional-scale synsedimentary San Marcos Fault. At the basin scale, the copper mineralization occurs at the top of a ~1000 m thick red-bed succession (San Marcos Formation, Berrisian), a few meters below a conformable, transitional contact with micritic limestones (Cupido Formation, Hauterivian to Aptian). It consists of successive decimeter-thick roughly stratiform copper-rich horizons placed just above the red-beds, in a transitional unit of carbonaceous grey-beds grading to micritic limestones. The host rocks are fine- to medium-grained arkoses, with poorly sorted and subangular to subrounded grains. The detrital grains are cemented by quartz and minor calcite; besides, late iron oxide grain-coating cement occurs at the footwall unmineralized red-beds. The source area of the sediments, indicated by their modal composition, is an uplifted basement. The contents of SiO2 (40.70–87.50 wt.%), Al2O3 (5.91–22.00 wt.%), K2O (3.68–12.50 wt.%), Na2O (0.03–2.03 wt.%) and CaO (0.09–3.78 wt.%) are within the ranges expected for arkoses. Major oxide ratios indicate that the sedimentary-tectonic setting was a passive margin.The outcropping copper mineralization essentially consists in a supergene assemblage of chrysocolla, malachite and azurite. All that remains of the primary mineralization are micron-sized chalcocite grains shielded by quartz cement. In addition, pyrite subhedral grains occur scattered throughout the copper-mineralized horizons. In these weathered orebodies copper contents range between 4.24 and 7.72 wt.%, silver between 5 and 92 ppm, and cobalt from 8 to 91 ppm. Microthermometric measurements of fluid inclusions in quartz and calcite crystals from footwall barren veinlets gave temperatures of homogenization between 98 °C and 165 °C, and ice-melting temperatures between ?42.5 °C and ?26.1 °C.The primary copper mineralization formed during the early diagenesis, contemporary with the active life of the Sabinas Basin. The mineralizing fluids were dense, near neutral, moderately oxidized brines that originally formed from seawater that, driven by gravity, infiltrated to the deepest parts of the basin and dissolved evaporites. As a result, they became hydrothermal fluids of moderate temperature capable of leaching high amounts of copper. The source of this metal could be mafic detrital grains and iron oxides of the underlying Jurassic and Lower Cretaceous red-beds. Copper precipitation took place when the brines passed through the redox boundary marked by the transition from red- to grey-beds. The upward movement of the brines was promoted by a high heat flow that allowed their convective circulation and their ascent along the synsedimentary San Marcos Fault.  相似文献   
4.
5.
6.
The Francisco I. Madero deposit, central Mexico, occurs in the Mesozoic Guerrero Terrane, which hosts many ore deposits, both Cretaceous (volcanogenic massive sulfides) and Tertiary (epithermal and skarn deposits). It is hosted by a 600 m-thick calcareous-pelitic unit, of Lower Cretaceous age, crosscut by porphyritic dikes that strike NW–SE. A thick felsic volcanic Tertiary sequence, consisting of andesites and rhyolitic ignimbrites, unconformably overlies the Cretaceous series. At the base, the mineralization consists of several mantos developed within calcareous beds. They are dominantly composed of sphalerite, pyrrhotite and pyrite with minor chalcopyrite, arsenopyrite and galena. At the top of the orebody, there are calcic skarns formed through prograde and retrograde stages. The resulting mineral assemblages are rich in manganoan hedenbergite (Hd75–28Di40–4Jh40–20), andraditic garnets (Adr100–62Grs38–0), epidote (Ep95–36Czo60–5Pie8–0), chamosite, calcite and quartz. The temperature of ore deposition, estimated by chlorite and arsenopyrite geothermometry, ranges from 243° to 277 °C and from 300° to 340 °C, respectively. The pressure estimated from sphalerite geobarometry averages 2.1 kbar. This value corresponds to a moderately deep skarn and agrees with the high Cu content of the deposit. Paragenesis, PT conditions and geological characteristics are compatible with a distal, dike-related, Zn skarn deposit. Its style of mineralization is similar to that of many high-temperature carbonate replacement skarn deposits in the Southern Cordillera.  相似文献   
7.
8.
Mineralogy and Petrology - The Cap de Creus granitic pegmatites in the eastern Catalan Pyrenees were dated using in situ U-Pb geochronology by laser ablation ICP-MS on zircon and columbite-group...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号