首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   0篇
  国内免费   2篇
测绘学   1篇
大气科学   1篇
地球物理   2篇
地质学   10篇
海洋学   6篇
天文学   1篇
  2019年   1篇
  2018年   1篇
  2017年   3篇
  2015年   1篇
  2013年   2篇
  2012年   1篇
  2011年   2篇
  2010年   2篇
  2009年   1篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  2003年   1篇
  2001年   1篇
排序方式: 共有21条查询结果,搜索用时 15 毫秒
1.
Systematic seasonal variations of suspended particulate matter (SPM) along a 44-km transect of the Mandovi estuary reveal that the concentrations of SPM are low at river-end stations, increase generally seaward, and are highest at sea-end stations of the estuary. An estuarine turbidity maximum (ETM) occurs at sea-end stations during June–September when river discharge is high and also in February–May when river discharge is low. These are the two windiest times of year, the former associated with the southwest monsoon and the latter characterized by a persistent sea breeze. The salinity vs. SPM plot shows that high SPM is a seaward deposit and skewed landward. Suspended matter comprised of floccules, fecal pellets, and aggregates that consist of clay and biogenic particles occur everywhere in the estuary. Diatoms are the most common and are of marine type at the sea-end and freshwater-dominated at river-end stations of the estuary. SPM is characterized by kaolinite- and smectite-rich clay mineral suites at the river- and sea-end stations, respectively. Smectite concentrations increase seawards with the increase in SPM content and are not influenced by salinity. Wind-driven waves and currents and biogeochemical processes at the mouth of estuary likely play an important role in the formation of ETM in resuspension and transformation of SPM into floccules and aggregates and in their upkeep or removal.  相似文献   
2.
It is shown that time compression curve obtained from one-dimensional consolidation curve in the laboratory may include six phases. These are initial compression, first primary compression, transition from first primary compression to second primary compression, second primary compression, and transition from second primary compression to creep and lastly creep. This paper attempts to identify the quantitative beginnings and characteristics of these phases. A mathematical characteristic of all the soils that follow primary consolidation as per Terzaghi’s one dimensional consolidation theory is derived. It is known as the constant of primary consolidation. It is used to study the beginning of secondary consolidation and its effects on primary consolidation. Another characteristic of soils for creep and total absence of primary compression is derived. Methods are suggested for the determination of coefficients of Primary and Secondary consolidations and the compression index.  相似文献   
3.
Groundwater is a treasured earth’s resource and plays an important role in addressing water and environmental sustainability. However, its overexploitation and wide spatial variability within a basin and/or across regions are posing a serious challenge for groundwater sustainability. Some parts of southern West Bengal of India are problematic for groundwater occurrence despite of high rainfall in this region. Characterization of an aquifer in this area is very important for sustainable development of water supply and artificial recharge. Electrical resistivity surveys using 1-D and 2-D arrays were performed at a regular interval from Subarnarekha River at Bhasraghat (south) to Kharagpur (north) to map the lithological variations in this area. Resistivity sounding surveys were carried out at an interval of 2–3 km. Subsurface resistivity variation has been interpreted using very fast simulated annealing (VFSA) global optimization technique. The analysis of the field data indicated that the resistivity variation with depth is suitable in the southern part of the area and corresponds to clayey sand. Interpreted resistivity in the northern part of the area is relatively high and reveals impervious laterite layer. In the southern part of the area resistivity varies between 15 and 40 Ωm at a depth below 30 m. A 2-D resistivity imaging conducted at the most important location in the area is correlated well with the 1-D results. Based on the interpreted resistivity variation with depth at different locations different types of geologic units (laterite, clay, sand, etc.) are classified, and the zone of interests for aquifer has been demarcated. Study reveals that southern part of the area is better for artificial recharge than the northern part. The presence of laterite cover in the northern part of the area restricts the percolation of rainwater to recharge the aquifer at depth. To recharge the aquifer at depth in the northern part of the area, rainwater must be sent artificially at depth by puncturing laterite layers on the top. Such studies in challenging areas will help in understanding the problems and finding its solution.  相似文献   
4.
This study characterizes the black carbon in Agra, India home to the Taj Mahal—and situated in the Indo-Gangetic basin.The mean black carbon concentration is 9.5 μg m~(-3)and, owing to excessive biomass/fossil fuel combustion and automobile emissions, the concentration varies considerably. Seasonally, the black carbon mass concentration is highest in winter, probably due to the increased fossil fuel consumption for heating and cooking, apart from a low boundary layer. The nocturnal peak rises prominently in winter, when the use of domestic heating is excessive. Meanwhile, the concentration is lowest during the monsoon season because of the turbulent atmospheric conditions and the process of washout by precipitation. The ratio of black carbon to brown carbon is less than unity during the entire study period, except in winter(December). This may be because that biomass combustion and diesel exhaust are major black carbon contributors in this region, while a higher ratio in winter may be due to the increased consumption of fossil fuel and wood for heating purposes. ANOVA reveals significant monthly variation in the concentration of black carbon; plus, it is negatively correlated with wind speed and temperature. A high black carbon mass concentration is observed at moderate(1–2 m s~(-1)) wind speed, as compared to calm or turbulent atmospheric conditions.  相似文献   
5.
Rock-magnetic measurements along with grain size, acid-insoluble residue (AIR), organic carbon (OC), CaCO3 and δ18O of the planktonic foraminifers of the sediments were determined for 15 gravity cores recovered from the western continental margin of India. Magnetic susceptibility (MS) values in the surficial sediments reflect the land-derived input and, in general, are the highest in terrigenous sediment-dominated sections of the cores off Saurashtra–Ratnagiri, followed by the sediments off Indus–Gulf of Kachchh and then Mangalore–Cape Comorin.

The down-core variations in mineral magnetic parameters reveal that the glacial sediments off the Indus are characterized by low MS values/S-ratios associated with high AIR-content, low OC/CaCO3 contents and relatively high δ18O values, while those off SW India are characterized by low MS values/high S-ratio% associated with low AIR content, and relatively high OC, CaCO3 and δ18O values. Conversely, the Early Holocene sediments of all cores are characterized by high MS values/S-ratio% associated with high AIR content, low OC, CaCO3 contents and gradually decreased δ18O values. These results imply that during the Last Glacial Maximum (LGM), the cores off northwestern India received abundant continental supply leading to the predominance of eolian/fluvial sedimentation. In the SW region the influence of hinterland flux is less evident during this period, but convective mixing associated with the NE monsoon resulted in increased productivity. During the early Holocene intense SW monsoon conditions resulted in high precipitation on land, which in turn contributed increased AIR content/MS values in the continental margin sediments. A shallow water core off Kochi further suggests that the intense SW monsoon conditions prevailed until about 5 ka. The late Holocene organic-rich sediments of the SW margin of India were, however, subjected to early diagenesis at different intervals in the cores. Therefore, caution is needed when interpreting regional climatic change from down-core changes in sediment magnetic properties.  相似文献   

6.
Systematic studies on the suspended particulate matter (SPM) measured on a seasonal cycle in the Mandovi Estuary, Goa indicate that the average concentrations of SPM at the regular station are ∼20mg/l, 5mg/l, 19mg/l and 5mg/l for June–September, October–January, February–April and May, respectively. SPM exhibits low-to-moderate correlation with rainfall indicating that SPM is also influenced by other processes. Transect stations reveal that the SPM at sea-end stations of the estuary are at least two orders of magnitude greater than those at the river-end during the monsoon. Estuarine turbidity maximum (ETM) of nearly similar magnitude occurs at the same location in two periods, interrupted by a period with very low SPM concentrations. The ETM occurring in June–September is associated with low salinities; its formation is attributed to the interactions between strong southwesterly winds (5.1–5.6ms−1) and wind-induced waves and tidal currents and, dominant easterly river flow at the mouth of the estuary. The ETM occurring in February–April is associated with high salinity and is conspicuous. The strong NW and SW winds (3.2–3.7ms−1) and wind-driven waves and currents seem to have acted effectively at the mouth of the estuary in developing turbidity maximum. The impact of sea breeze appears nearly same as that of trade winds and cannot be underestimated in sediment resuspension and deposition  相似文献   
7.
Rare earth elements (REEs) in the suspended particulate matter (SPM) of the Mandovi estuary indicated that the mean total-REEs (∑REE) and light REE to heavy REE ratios are lower than that of the average suspended sediment in World Rivers and Post-Archean average Australian shale. High ∑REE were associated with high SPM/low salinity and also with high SPM/high salinity. Although the ∑REE broadly agree with SPM levels at each station, their seasonal distributions along transect are different. SPM increased seaward in the estuary both during the monsoon and pre-monsoon, but consistently low at all stations during the post-monsoon. The mean ∑REE decreased marginally seaward and was <25% at sea-end station than at river-end station. Spatial variations in ∑REE are maximum (64%) during the pre-monsoon. Strong to moderate correlation of ∑REE with Al, Fe and Mn in all seasons indicates adsorption and co-precipitation of REEs with aluminosilicate phases and Fe, Mn-oxyhydroxides. The ratio of mean ∑REE in sediment/SPM is low during the monsoon (1.27), followed by pre-monsoon (1.5) and post-monsoon (1.62). The middle REE- and heavy REE-enriched patterns with positive Ce and Eu anomalies are characteristic at every station and season, both in SPM and sediment. They also exhibit tetrad effect with distinct third and fourth tetrads. Fe-Mn ore dust is the most dominant source for REEs. However, the seasonal changes in the supply of detrital silicates, Fe-Mn ore dust and particulates resuspended from bottom sediments diluted the overall effect of salinity on fractionation and distribution of REEs in the estuary.  相似文献   
8.
9.
Studies on the suspended particulate matter (SPM) in the Mandovi estuary, western India indicate that during the monsoon and pre-monsoon, the SPM increases, and the major and trace metals decrease from stations in the upstream to downstream of the estuary. SPM is consistently low at all stations during the post-monsoon. Trace metals (Cu, Ni, Zn, Cr, and Pb) show strong inter-relationships. They correlate well with Fe and Mn only during the monsoon. The concentrations of Cr, Cu, and Pb are high during the post-monsoon. Enrichment factors and I geo values of metals indicate that Mn shows significant to strong pollution in all seasons, while Cr, Ni, and Zn during monsoon, and Cr during the post-monsoon show moderate pollution. SPM is controlled by the turbidity maximum, while major and trace metals are governed seasonally by a combination of river discharge, resuspension, spillage of Fe–Mn particulates, and anthropogenic contamination. Incursion of saline waters deep into the river channel during the dry season facilitates aggregation and settling of particulate-borne pollutants close to the discharge area, thereby keeping the estuarine waters free from major contamination.  相似文献   
10.
Abstract

A large number of surface sediments as well as short sediment cores collected in the Central Indian Ocean Basin have been subjected to various geochemical investigations during the last one and half decade. The studies varied, covering different aspects of sediments and resulting in a number of publications. In the present article, we have put together the data from 82 surface sediments and 14 short sediment cores, including 25 new analyses, to study the trend of their distribution and source at large. The distribution maps of elements show that highest concentrations of Mn, Cu, Ni, Zn, Co, and biogenic opal in the surface sediment occurs between 10°S and 16°S latitude, where diagenetic ferromanganese nodules rich in Mn, Cu, Ni, and Zn are present. The studies highlight that the excess element concentration (detrital unsupported) such as Mn, Cu, Ba, Ni, Co, Pb, and Zn have contributed >80% of their respective bulk composition. These excess elements exhibit strong positive correlation with each other suggesting their association with a single authigenic phase such as Mn oxide. Biogenic opal contributes 30–50% of the total silica in the siliceous sediment. Aluminum, Fe, and K have contributed >60% from terrigenous detrital source compared to their bulk composition. In calcareous ooze, Ca, and Sr excess contribute >95% while, in siliceous ooze it is only 50% of their bulk composition. Nearly 35% of structurally unsupported Al in the sediment raises doubt of using Al as a terrigenous index element to normalize the trace and minor elements. Biogenic apatite is evident by the positive correlation between Ca (<1%) and P. Calcium, Sr, and P depict a common source such as biogenic. Bulk element concentration such as Li, V, Cr, Sc, and Zr are positively correlated with Ti indicating their terrigenous detrital source. Rare earth element (REE) concentration increases from calcareous ooze to siliceous ooze and reaches a maximum in the red clay. Presence of positive Eu-anomaly in these sediments has been attributed to aeolian input. REE in these sediments are mostly carried by authigenic phases such as manganese oxide and biogenic apatite. Based on the distribution of transition elements in the sediment cores, three distinct zones—oxic at top, suboxic at intermediate depth, and a subsurface maxima—have been identified. Oxic and suboxic zones are incidentally associated with high and low micronodule abundance in the coarse fraction (>63 μm) respectively. Ash layers encountered at intermediate depth between 10 to 35 cm are correlative with the Youngest Toba eruption of ~74ka from Northern Sumatra. This ash is mainly responsible for the high bulk Al/Ti ratio up to 48.5 (three times higher than Post Archean Australian Shale), other than scavenging of dissolved Al by biogenic components.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号