首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
地质学   3篇
  2021年   1篇
  2010年   1篇
  2008年   1篇
排序方式: 共有3条查询结果,搜索用时 46 毫秒
1
1.
T. Praharaj  D. Fortin   《Applied Geochemistry》2008,23(12):3728-3740
Several studies have shown that SO4-reducing bacteria (SRB) are active in acidic sulfide-rich mine tailings and sediments impacted by mining activities. SRB activity in acidic tailings has been shown to vary with seasons as a result of fluctuating in situ physico-chemical conditions. Iron-reducing bacteria (FeRB) also play an important role in Fe cycling in sediments impacted by mining activities, but their activity in mine tailings is poorly understood, despite the fact that geochemical evidence indicates that they might be active. The present study was undertaken to assess the seasonal changes in SRB and FeRB abundance and activity in alkaline Pb–Zn mine tailings (Calumet tailings) located near Ottawa, ON, Canada. Results showed that FeRB and SRB populations were present throughout the year at two different sampling sites at the Calumet tailings, but SO4 reduction rates (SRR) were lower in the spring than in the summer, indicating that SRB activity was affected by organic C availability and/or temperature. Surface agricultural runoff at one site provided ample nutrients and organic C to the tailings, but SRB activity remained lower than the site not impacted by nutrient runoff, suggesting that the type of organic C was different between the two sites and that less labile organic substrates were available to SRB in the organic-rich site. High SRB activity in the site containing low organic C inhibited the abundance of FeRB, and possibly their activity, as a result of abiotic reduction of Fe(III)-rich minerals by biogenic sulfides, which lowered the pool of final electron acceptors. The abiotic reduction pathway was consistent with the porewater data which showed that sulfide was consumed and SO4 produced, along with Fe(II). These results show a strong interdependence between SRB and FeRB activity, as observed in other environments, such as saltmarsh sediments. Low temperature did not appear to hinder FeRB abundance in alkaline tailings. Finally, despite evidence that SRB populations were active at both sites, the |S isotopic composition of the AVS and CRS fractions were not representative of biogenic sulfides, indicating that the overall S-isotope signature of mine tailings is more representative of abiotic sulfides originating from the ore body.  相似文献   
2.

Predicting tropical cyclone (TCs) tracks is a primary concern in TC forecasting. Some TCs appear to move in a direction favorable for their development, beyond the influence of the steering flow. Thus, we hypothesize that TCs move toward regions with high water-vapor content in the lower atmosphere. In this study, four numerical experiments, including a control experiment and three sensitivity experiments, were performed using the Weather Research and Forecasting Model, to analyze the relationship between water vapor distribution and the track of Severe Typhoon Hato (2017). Observations validated the features reproduced in the control experiment. The sensitivity experiments were conducted to explore variations in the TC track under different water vapor environments. Results indicate that the horizontal distribution of water-vapor content exerted a greater impact on the TC track than the steering flow when both factors were significant. Further analysis revealed that the TC’s movement vector was between the direction of the steering flow and the direction toward the peak of vorticity increasing area. The peaks of vorticity increasing area were close to the peaks of water vapor increasing area, which also proved the effect of water vapor distribution on the TC track. These results are expected to improve TC track analysis and forecasting.

  相似文献   
3.
Lacustrine sediments, submerged tailings, and their pore waters have been collected at several sites in Yellowknife Bay, Great Slave Lake, Canada, in order to investigate the biogeochemical controls on the remobilization of As from mining-impacted materials under different depositional conditions. Radiometric dating confirms that a mid-core enrichment of Pb, Zn, Cu and Sb corresponds to the opening of a large Au mine 60 a ago. This was evident even in a relatively remote site. Arsenic was enriched at mid-core, coincident with mining activity, but clearly exhibited post-depositional mobility, migrating upwards towards the sediment water interface (SWI) as well as down-core. Deep-water (15 m) Yellowknife Bay sediments that contain buried mine waste are suboxic, relatively organic-rich and abundant in microbes with As in pore waters and sediments reaching 585 μg/L and 1310 mg/kg, respectively. Late summer pore waters show equal proportions of As(III) and As(V) (16–415 μg/L) whereas late winter pore waters are dominated by As(III) (284–947 μg/L). This can be explained by As(III) desorption mechanisms associated with the conversion of FeS to FeS2 and the reduction of As(V) to As(III) through the oxidation of dissolved sulfide, both microbially-mediated processes. Processes affecting As cycling involve the attenuating efficiency of the oxic zone at the SWI, sediment redox heterogeneity and the reductive dissolution of Fe(hydr)oxides by labile organic matter, temporarily and spatially variable.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号