首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   1篇
大气科学   1篇
地球物理   4篇
地质学   4篇
自然地理   2篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2013年   3篇
  2008年   1篇
  2005年   1篇
  2003年   1篇
  2002年   1篇
  1995年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
Intensive pumping in urban coastal areas is a common threat to water resource quality due to seawater intrusion. In those areas where subsurface water resources are not usually used for human consumption or irrigation, intensive pumping is associated with other activities like the lowering of the water table necessary to support underground structures and building foundations. This activity also increases the likelihood of soil settlement that affects building stability and the corrosion of concrete structures due to groundwater salinity. Under these circumstances, the awareness of a certain municipality (Calonge, NE Spain) of the potential effects of groundwater withdrawal upon foundations has led to an integrated approach to anticipate seawater intrusion related to urban development. Geological mapping and correlation of borehole logs, electrical resistivity tomography, and hydrochemical data provide comprehensive knowledge of the geology and hydrogeology of the area and act as screening tools necessary to discern the influence of hydrological processes in coastal areas. Developing Strack's analytical solution, new comprehensive, dimensionless expressions are herein derived to determine the critical pumping rate necessary to prevent seawater intrusion, as well as to reproduce the evolution of the wedge toe and the water table stagnation point under different withdrawal rates. Furthermore, the Dupuit–Forchheimer well discharge formula allows the estimation of the effects of the water table lowering due to such critical pumping in the surrounding building foundations. Field data from the Calonge coastal plain illustrate this approach and provide assessment criteria for future urban development and planning. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
2.
In the last decade, much effort was dedicated to the reconstruction of past climate at high temporal resolution. Here, we show the suitability of chrysophyte cysts from lake sediments for revealing continental climate variability when used in sensitive sites, such as those in high mountains. We demonstrate that altitude is a main factor influencing the present distribution of chrysophytes and develop a transfer function to evaluate the local altitude anomaly on a lake site throughout time. Based on our knowledge of chrysophyte ecology, the altitude anomalies are interpreted as winter/spring climate signatures. The method was applied to a Holocene record from a lake in the Pyrenees showing submillennial climatic variability in this northwestern Mediterranean zone. A warming trend was present from the early Holocene to 4 kyear BP. Comparison with pollen-based reconstructions of summer temperatures denoted a contrasting decrease in continentality between the two parts of the Holocene. Oscillations of 1 cycle per ca. 2,000 years appeared throughout the record. The warmest Holocene winters were recorded during the Medieval Warm Period at ca. AD 900 and 450 and the Roman Warm Period (2.7–2.4 kyear BP). Winters in the period AD 1,050–1,175 were inferred to be as cold as in the Little Ice Age. The period between 3 and 7 kyear BP showed lower intensity in the fluctuations than in early and late Holocene. The cold event, 8,200 years ago, appeared embedded in a warm fluctuation. Another cold fluctuation was recorded around 9 kyear BP, which is in agreement with Irish and Greenland records.This revised version was published online in January 2005 with corrections to the background of figures 9 and 12.  相似文献   
3.
4.
Abstract

Most climate change projections show important decreases in water availability in the Mediterranean region by the end of this century. We assess those main climate change impacts on water resources in three medium-sized catchments with varying climatic conditions in northeastern Spain. A combination of hydrological modelling and climate projections with B1 and A2 IPCC emission scenarios is performed to infer future streamflows. The largest reduction (34%) in mean streamflows (for 2076–2100) is expected in the headwaters of the two wettest catchments, while lower decreases (25% of mean value for 2076–2100) are expected in the drier one. In all three catchments, autumn and summer are the seasons with the most notable projected decreases in streamflow, of 50% and 30%, respectively. Thus, ecological flows in the study area might be noticeably influenced by climate change, especially in the headwaters of the wet catchments.  相似文献   
5.
The ecosystem response of Lake Redó (Central Pyrenees) to fluctuations in seasonal air temperature during the last two centuries was investigated by comparison of reconstructed air temperatures with the sediment record. Fine slicing allowed a resolution of 3–6 years according to the 210Pb dating, although it was still difficult to easily investigate the response to air temperature forcing, since extreme fluctuations in temperature occur on interannual time-scales. However, the resolution was sufficient to show responses on decadal and century scales. An overall tendency to warming in mean annual temperature in the Central Pyrenees has been caused by summer and in particular by autumn increases. Many of the measured sediment variables apparently responded to these long term trends, but the significance of the relationships was highly conditioned by the structure of the data. The variables responding most on the finer time scales were the microfossils. For diatoms, chironomids and chrysophytes the main variability correlated to summer and to autumn temperatures. For two planktonic species, Fragilaria nanana and Cyclotella pseudostelligera, we found a link of their variability with temperature fluctuations in their growing months (September and October, respectively). This relationship appeared at a certain point during a general warming trend, indicating a threshold in the response. On the other hand, no significant changes in the dominant species could be linked to temperature, nor in any significant subgroup of the 180 diatom species present in the core. In contrast, for most chironomids (particularly Paratanytarsus austriacus, Heterotrissocladius marcidus and Micropsectra radialis) a negative relationship with summer temperature extended throughout the studied period. This response of the whole group gives chironomids a more robust role as indicators for recording temperature changes on long time-scales (e.g., through the Holocene) and for lake signal inter-comparison. Finally, our results indicated that, in all cases, there was a significant resilience to high frequency changes and hysteresis despite extreme fluctuations. Although we were dealing with organisms with one or many generations per year, their populations seemed to follow the decadal trends in air temperature.  相似文献   
6.
Chrysophyte cysts were identified from the surface sediment of 105 mountain lakes in the Pyrenees (NE Spain), and their statistical relationship to water chemistry was examined using canonical correspondence analysis (CCA). The chemical parameters that explained significant and independent amounts of variability were alkalinity, pH, potassium, nitrate and magnesium. In a CCA using these parameters, the first canonical axis was related to a gradient of alkalinity and pH, which reflected the varying nature of the watershed bedrock in the Pyrenees, while the second axis was correlated with potassium (negatively) and nitrate (positively). The potential for environmental reconstructions of the five chemical parameters was further studied by: (i) analyzing the distribution of optima and tolerances calculated by weighted-averaging (WA); (ii) carrying out detrended canonical correspondence analysis (DCCA) with a single environmental variable; and (iii) examining the performance of WA-PLS transfer functions. Acceptable transfer functions were obtained for alkalinity, pH and nitrate. However, for potassium and magnesium the tolerance of cysts was too broad and the distribution of optima too skewed, respectively. The possibility of reconstructing nitrogen-related issues using chrysophyte cysts is particularly interesting because of the lack of direct chemical records of nitrogen compounds in sediments. Nitrate reconstructions using transfer functions may be complemented by a holistic reconstruction using partial CCA, where, after subtracting the effects of other chemicals, samples are ordered on a plain defined by potassium and nitrate. This ordination could show down-core trends in lake productivity and renewal time.  相似文献   
7.
Karst Aquifer GIS‐based model (KAGIS model) is developed and applied to Mela aquifer, a small karst aquifer located in a Mediterranean region (SE Spain). This model considers different variables, such as precipitation, land use, surface slope and lithology, and their geographical heterogeneity to calculate both, the run‐off coefficients and the fraction of precipitation which contributes to fill the soil water reservoir existing above the aquifer. Evapotranspiration uptakes deplete water, exclusively, from this soil water reservoir and aquifer recharge occurs when water in the soil reservoir exceeds the soil field capacity. The proposed model also obtains variations of the effective porosity in a vertical profile, an intrinsic consequence of the karstification processes. A new proposal from the Nash–Sutcliffe efficiency index, adapted to arid environments, is presented and employed to evaluate the model's ability to predict the water table oscillations. The uncertainty in the model parameters is determined by the Generalized Likelihood Uncertainty Estimation method. Afterwards, when KAGIS is calibrated, wavelet analysis is applied to the resulting data in order to evaluate the variability in the aquifer behaviour. Wavelet analysis reveals that the rapid hydrogeological response, typical of a wide variety of karst systems, is the prevailing feature of Mela aquifer. This study proves that KAGIS is a useful tool to quantify recharge and discharge rates of karst aquifers and can be effectively applied to develop a proper management of water resources in Mediterranean areas.  相似文献   
8.
9.
Future variability of droughts in three Mediterranean catchments   总被引:3,自引:3,他引:0  
Lopez-Bustins  Joan A.  Pascual  Diana  Pla  Eduard  Retana  Javier 《Natural Hazards》2013,66(3):1405-1429
This study investigates the intensity change in typhoons and storm surges surrounding the Korean Peninsula under global warming conditions as obtained from the MPI_ECHAM5 climate model using the A1B series. The authors use the Cyclostationary Empirical Orthogonal Function to estimate future background fields for typhoon simulations from twenty-first-century prediction results. A series of numerical experiments applies WRF (Weather Research and Forecasting) and POM (Prinston Ocean Model) models to simulate two historical typhoons, Maemi (2003) and Rusa (2002), and associated storm surges under real historical and future warming conditions. Applying numerical experiments to two typhoons, this study found that their central pressure dropped about 19 and 17 hPa, respectively, when considering the future sea surface temperature (a warming of 3.9 °C for 100 years) over the East China Sea (Exp. 1). The associated enhancement of storm surge height ranged from 16 to 67 cm along the southern coast of the Korean Peninsula. However, when the study considered global warming conditions for other atmospheric variables such as sea-level pressure, air temperature, relative humidity, geopotential height, and wind in the typhoon simulations (Exp. 2), the intensities of the two typhoons and their associated surge heights scarcely increased compared to the results of Exp. 1. Analyzing projected atmospheric variables, the authors found that air temperatures at the top of the storm around 200 hPa increased more than those at the surface in tropical and mid-latitudes. The reduced vertical temperature difference provided an unfavorable condition in the typhoon’s development even under conditions of global warming. This suggests that global warming may not always correlate with a large increase in the number of intense cyclones and/or an increase in associated storm surges.  相似文献   
10.
The Tatricum, an upper crustal thrust sheet of the Central Western Carpathians, comprises pre-Alpine crystalline basement and a Late Paleozoic-Mesozoic sedimentary cover. The sedimentary record indicates gradual subsidence during the Triassic, Early Jurassic initial rifting, a Jurassic-Early Cretaceous extensional tectonic regime with episodic rifting events and thermal subsidence periods, and Middle Cretaceous overall flexural subsidence in front of the orogenic wedge prograding from the hinterland. Passive rifting led to the separation of the Central Carpathian realm from the North European Platform. A passive margin, rimmed by peripheral half-graben, was formed along the northern Tatric edge, facing the Vahic (South Penninic) oceanic domain. The passive versus active margin inversion occurred during the Senonian, when the Vahic ocean began to be consumed southwards below the Tatricum. It is argued that passive to active margin conversion is an integral part of the general shortening polarity of the Western Carpathians during the Mesozoic that lacks features of an independent Wilson cycle. An attempt is presented to explain all the crustal deformation by one principal driving force - the south-eastward slab pull generated by the subduction of the Meliatic (Triassic-Jurassic Tethys) oceanic lithosphere followed by the subcrustal subduction of the continental mantle lithosphere.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号