首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
地球物理   1篇
地质学   5篇
海洋学   1篇
自然地理   2篇
  2021年   1篇
  2018年   1篇
  2016年   1篇
  2005年   1篇
  2003年   2篇
  2001年   1篇
  2000年   2篇
排序方式: 共有9条查询结果,搜索用时 46 毫秒
1
1.
Source rock lithology and immediate modifying processes, such as chemical weathering and mechanical erosion, are primary controls on fluvial sediment supply. Sand composition and Chemical Index of Alteration (CIA) of parent rocks, soil and fluvial sand of the Savuto River watershed, Calabria (Italy), were used to evaluate the modifications of source rocks through different sections of the basin, characterized by different geomorphic processes, in a sub‐humid Mediterranean climate. The headwaters, with gentle topography, produce a coarse‐grained sediment load derived from deeply weathered gneiss, having sand of quartzofeldspathic composition, compositionally very different from in situ degraded bedrock. Maximum estimated CIA values suggest that source rock has been affected significantly by weathering, and it testifies to a climatic threshold on the destruction of the bedrock. The mid‐course has steeper slopes and a deeply incised valley; bedrock consists of mica‐schist and phyllite with a very thin regolith, which provides large cobble to very coarse sand sediments to the main channel. Slope instability, with an areal incidence of over 40 per cent, largely supplies detritus to the main channel. Sand‐sized detritus of soil and fluvial sand is lithic. Estimated CIA value testifies to a significant weathering of the bedrock too, even if in this part of the drainage basin steeper slopes allow erosion to exceed chemical weathering. The lower course has a braided pattern and sediment load is coarse to medium–fine grained. The river cuts across Palaeozoic crystalline rocks and Miocene siliciclastic deposits. Sand‐sized detritus, contributed from these rocks and homogenized by transport processes, has been found in the quartzolithic distal samples. Field and laboratory evidence indicates that landscape development was the result of extensive weathering during the last postglacial temperature maximum in the headwaters, and of mass‐failure and fluvial erosional processes in the mid‐ and low course. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   
2.
This paper investigates the provenance of Middle Jurassic to Early Cretaceous sediments in the Kutch Basin, western India, on the basis of mineralogical investigations of sandstones composition(Quartz-Feldspar-Lithic(QFL)fragment), Zircon-Tourmaline-Rutile(ZTR) index, and mineral chemistry of heavy detrital minerals of the framework.The study also examines the compositional variation of the sandstone in relation to the evolution of the Kutch Basin, which originated as a rift basin during the Late Triassic and evolved into a passive margin basin by the end Cretaceous. This study analyzes sandstone samples of Jhumara, Jhuran and Bhuj Formations of Middle Jurassic,Upper Jurassic and Lower Cretaceous, respectively, in the Kutch Mainland. Sandstones record a compositional evolution from arkosic to subarkosic as the feldspar content decreases from 68% in the Jhumara Formation to 27%in the Bhuj Formation with intermediate values in the Jhuran Formation. The QFL modal composition indicates basement uplifted and transitional continental settings at source. Heavy mineral content of these sandstones reveals the occurrence of zircon, tourmaline, rutile, garnet, apatite, monazite and opaque minerals. Sub-rounded to well-rounded zircon grains indicate a polycyclic origin. ZTR indices for samples in Jhumara, Jhuran and Bhuj Formations are 25%, 30% and 50% respectively. Chemistry of opaque minerals reveals the occurrence of detrital varieties such as ilmenite, rutile, hematite/magnetite and pyrite, in a decreasing order of abundances. Chemistry of ilmenites in the Jhumara Formation reveals its derivation from dual felsic igneous and metabasic source, while those in Jhuran and Bhuj Formations indicate a metabasic derivation. Chemistry of garnet reveals predominantly Fe-rich(almandine) variety of metabasic origin. X-ray microscopic study provides the percentage of heavy minerals ranging from 3% to 5.26%. QFL detrital modes reflect the evolution of the basin from an active rift to a passive margin basin during the Mesozoic. Integration of results from QFL modal composition of the sandstones, heavy mineral analysis and mineral chemistry, suggests sediment supply from both northern and eastern highlands during the Middle Jurassic. The uplift along the Kutch Mainland Fault in the Early Cretaceous results in curtailment of sediment input from north.  相似文献   
3.
Plutonic and gneissic rocks of the Sila Massif in the uppermost portion of the Neto drainage basin (Calabria, Southern Italy) weather and erode under a humid Mediterranean climate. During the development of weathering profiles, a combination of chemical weathering and granular disintegration processes occurred. Chemical weathering involves a loss of both plagioclase (mainly during grus generation) and K-feldspar (mainly during soil formation). This loss is attributed to transformation of plagioclase to clay minerals and to leaching and dissolution of K-feldspar. Sand composition is quartzofeldspathic and nearly homogeneous along the main channel of the Neto River, even where the river cuts across a blanket of sedimentary cover. Thus, fluvial transport does not alter sand composition within the Neto drainage basin. Petrographic indices are effective in (1) discriminating between contributions from similar (granite and gneiss) source rocks (Qm/F); (2) relating the provenance of plutoniclastic and gneissiclastic sand found in the headwaters to grus horizons (Qm/F; Q/Rg); and (3) distinguishing between upstream first-cycle and downstream multicycle sand (Q/Rg). This last distinction is further emphasized by considering both aphanitic and phaneritic varieties of rock fragments (RgRmRs diagram). Chemical weathering is the main sand producer within the regolithic environment in northern Calabria. In addition, rapid erosion resulting from steep slopes removes weathered products, and rapid and short transport leads to minimal sediment maturation. In general, the F/Q index is climate and relief dependent; thus, it should be used in conjunction with palaeoclimatic and palaeophysiographic evidence for provenance interpretations of ancient quartzofeldspathic sandstones.  相似文献   
4.
Five representative soil profiles outcropping in the area around the Cecita Lake (Calabria, South Italy) were characterised by field work, chemical and mineralogical analyses, optical and scanning electron microscopy. Interactions among weathering, pedogenesis and geomorphic processes are emphasised, in an attempt to link the results obtained at different scales of observation. The important role of topography in controlling soil development or removal by erosive processes is discussed, in relation to the natural geomorphological context and the effects of human pressure. Both present-day and relict features were recognised in the studied soils, and discussed in terms of environmental conditions and climatic changes. The chemical composition of volcanoclastic components identified in some soil horizons with Andosol-like field appearance, coupled with pedogenetic features, contributed useful chronological constraints for the reconstruction of Late Quaternary geomorphic events.  相似文献   
5.
Weathering and morphogenesis in a mediterranean climate, Calabria, Italy   总被引:1,自引:0,他引:1  
Deeply weathered plutonic rocks occur widely in the Sila Massif, Calabria, southern Italy. Three representative weathering profiles developed on the hilltops indicate that sand represents more than 50% by weight throughout most of the weathering profile, and silt- and clay-size fractions are also well represented, filling the interstices among corestones. Both sand, and finer fractions of grus, and soil horizons, are thought to be derived from a combination of granular disintegration and chemical decomposition, developed on relatively flat terrains of the Sila massif. These slopes are now experiencing transport-limited morphodynamics, under a montane-modified Mediterranean climate. The depth of the weathered layers, that have suffered little erosional truncation, typically exceed 15 m, and may reach 50–60 m or more. Major isolated or grouped exfoliation boulders are the most common minor landform feature developed on the Sila massif granite. Boulders have developed as a result of spheroidal weathering and by removal of the sandy-textured granite. The Schmidt hammer (SH) test on boulders and corestones, suggests three distinctive degree of weathering (from moderately to completely weathered rock), and that biotite content is the major controlling factor of the granite mechanical behaviour. Understanding of the dynamics of this weathering system is crucial to the interpretation of the complex suite of variables that control landscape evolution of granitoid terrains.  相似文献   
6.
This work focuses on developing multidisciplinary research on weathering profiles of granitoid rocks related to the tectonic and landscape evolution of the Capo Vaticano area, Calabria, southern Italy. During the Pleistocene, the Mediterranean climate plays, on the already decomposed plutonic rocks, important processes of alteration, on both the highest and inland areas and the coastal areas of the Calabrian region, such as the studied area. Field observations coupled to chemical, minero‐petrographical features and geochemical modelling are used to characterize the weathering processes affecting the granitoid complex. The granitoid cut slopes show a generally simple weathering profile characterized by a progressive increase in weathering towards the top of the slopes. The completely weathered rocks (class V) and residual soil (class VI) contain a high percentage of altered minerals, microfractures, and voids. The main mineralogical changes are the partial transformation of biotite and the partial destruction of feldspars (mainly plagioclase) that are associated with the neoformation of secondary clay minerals and ferruginous products during the most advanced stage of weathering. These transformations produce a substitution of the original rock fabric. Geochemical modelling showing the precipitation of kaolinite, illite, vermiculite, ferrihydrite and calcite. These secondary solid phases are similar to those found in this natural system. Thus, the final results of the weathering process is a soil‐like material mainly characterized by mostly a sand to gravel grain‐size fractions related to microfabric changes and mineralogical and chemical variations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
7.
8.
Central Italy is an active tectonic area that has been recently studied by several regional mantle, Pn and SKS, studies which revealed the presence of a strong regional anisotropy. In this paper, we present the first petrophysical results on the only mantle xenoliths from Central Italy, which place new constraints on the upper mantle structures of this region. The Torre Alfina mantle xenoliths are very small in size, from few millimetres to about 1.5 cm. They are mainly dunites and harzburgites, with subordinate lherzolites and wehrlites. Since olivine and spinel are always present, they should have crystallised in the spinel-bearing lherzolite field. Their mineralogical composition is ol+spl±opx±cpx. Both olivines and pyroxenes are present as porphyroclasts and as neoblasts. The xenoliths show different degrees of recrystallization. Geothermobarometry on these xenoliths give a temperature range of 1040±40 °C and a pressure estimate of about 1.5 GPa, corresponding to 50 to 60 km depth. Previous seismic studies have estimated the Moho to be at 20 to 25 km in this region, hence the xenoliths come from a hot mantle, probably asthenospheric, below a lithosphere of about 25 to 40 km in thickness below the Moho. We measure the crystallographic preferred orientation (CPO) of olivines and pyroxenes using a SEM and the Electron Back Scattered Diffraction (EBSD) technique. The CPO shows all three axes of olivine are tightly clustered: [100] axis is typically more tightly clustered than [010] and [001] is the most widely distributed axis. The fabric strength expressed by the integral J index, varies from 4.5 to 25.9, and decreases with the degree of recrystallization. We use CPO data to calculate anisotropic seismic properties of the xenoliths. They are very homogenous and probably statistically representative of the mantle below the Torre Alfina area. Vp ranges from 8.4 to 9.1 km/s, Vs1 from 4.8 to 5.0 km/s. The seismic anisotropy is more variable; AVp ranges from 9.8% to 19.3% and AVs from 7.3% to 13.4%. The majority of the xenoliths display an orthorhombic seismic symmetry, but xenoliths with a transverse isotropic behaviour have also been observed.

We consider four geodynamic models for the source region of the xenoliths (extension, shear, upwelling, slab tilted), defined by different orientations of the structural reference frame, and we calculated for each model the variation of the seismic properties with temperature, pressure and volume fraction of orthopyroxene. After comparing this variation of calculated seismic parameters with seismic observations from the region, we form the hypothesis that the xenoliths come from either an extensional tectonic zone (lineation X and foliation plane XY horizontal) or transcurrent shear zone (lineation X horizontal and foliation plane XY vertical) and that the mantle beneath Torre Alfina is composed by 70% olivine and 30% orthopyroxene forming an anisotropic layer of about 160 or 110 km in thickness, respectively.  相似文献   

9.

The progressive electrification of the building conditioning sector in recent years has greatly contributed to reducing greenhouse gas emissions by using renewable energy sources, particularly shallow geothermal energy. This energy can be exploited through open and closed shallow geothermal systems (SGS), and their performances greatly depend on the ground/groundwater temperature, which can be affected by both natural and anthropogenic phenomena. The present study proposes an approach to characterize aquifers affected by high SGS exploitation (not simulated in this work). Characterization of the potential hydro/thermogeological natural state is necessary to understand the regional flow and heat transport, and to identify local thermal anomalies. Passive microseismic and groundwater monitoring were used to assess the shape and thermal status of the aquifer; numerical modeling in both steady-state and transient conditions allowed understanding of the flow and heat transport patterns. Two significant thermal anomalies were detected in a fluvio-glacial aquifer in southern Switzerland, one created by river water exfiltration and one of anthropogenic nature. A favorable time lag of 110 days between river and groundwater temperature and an urban hot plume produced by underground structures were observed. These thermal anomalies greatly affect the local thermal status of the aquifer and consequently the design and efficiency of current and future SGS. Results show that the correct characterization of the natural thermo-hydrogeological status of an aquifer is a fundamental basis for determining the impact of boundary conditions and to provide initial conditions required to perform reliable local thermal sustainability assessments, especially where high SGS exploitation occurs.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号