首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   0篇
地球物理   5篇
地质学   27篇
天文学   2篇
自然地理   2篇
  2021年   1篇
  2017年   1篇
  2016年   3篇
  2015年   3篇
  2013年   2篇
  2012年   4篇
  2011年   1篇
  2009年   3篇
  2008年   7篇
  2007年   1篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1995年   1篇
  1982年   1篇
  1978年   1篇
排序方式: 共有36条查询结果,搜索用时 31 毫秒
1.
Evolution of coastlines in karst areas may be strongly controlled by dissolution processes which favour the development of surface and subsurface landforms. The generation of caves in these environments is commonly favoured by the mixing between fresh and brackish waters. The sinkholes resulting from the upward propagation of the caves may interfere with the anthropogenic environment and cause damage to human elements (property and activities). To highlight the often underestimated importance of karst phenomena in coastal areas, we have analyzed a coastal stretch of Apulia, in southern Italy. The study area, covering an extension of about 6 km2, is situated in the Ionian coast, and presents several interesting karst landforms that are generally connected to caves. Tens of sinkholes were mapped through field surveys, multi-year aerial-photographs (dating back to the 1940s) and archival research. We have performed a morphometric analysis of the sinkholes. The analysis describes the main parameters of the sinkholes (area, length, width, and depth), and the control exerted by the main discontinuity systems in the area. The detrimental effects derived from interaction between human environment and these karst landforms is also under consideration. A sinkhole susceptibility map, which may provide useful information for planners, developers and the insurance industry has eventually been produced through application of a decision tree model.  相似文献   
2.
Comments are presented on the article by Abbasnejad et al. (Environ Earth Sci 75:1306, 2016) dealing with qanat and hazards in Iran. My rebuttal starts from the direct attribution of the described hazards to qanat and addresses the importance in the correct use of terminology for geological hazards. All of the problems pointed out in Iran (subsidence, sinkholes, pollution) have, to me, an anthropogenic origin and cannot be directly ascribed to qanat. Eventually, I present some additional elements to highlight the remarkable importance of qanat systems and their influence on the development of similar underground structures in many countries of the Mediterranean Basin. This remarks the relevance of qanat as cultural heritage sites and the need for their preservation and valorization.  相似文献   
3.
The structures of deuterated pyrochroite, Mn(OD)2 and β−Cο(OD)2 have been refined using the Rietveld method and neutron powder diffraction data collected in an opposed-anvil high pressure (Paris-Edinburgh) cell from room pressure to 9 GPa. The equation of state for Mn(OD)2 was determined (K=41(3) GPa for fixed K′=4.7) and found to be consistent with previous studies of the isostructural brucite, Mg(OD)2. The compressibility of β−Cο(OD)2 on the other hand is apparently anomalous. The c-axis initially decreases at 3 times the rate of decrease of the a-axis; the ratio decreases to about 1.5 at an estimated 6 GPa before increasing again beyond this pressure. There is no obvious corresponding anomaly in the details of the atomic structure. In both materials there is an increase in the D-site disorder with pressure. A split-site model for the D-positions best fits the data at pressures above 8 GPa. There is no statistically significant increase in the O-D interatomic distance at increased pressure while the hydrogen bonding interaction D...O appears to increase as this distance decreases and the O-D...O angle increases. The intramolecular O-D bond valences, determined indirectly from the intermolecular D...O distances, decrease steadily for both materials as pressure is increased. Received: 31 October 1996 / Revised, accepted: 27 February 1997  相似文献   
4.
Rockfalls are common in the steep and vertical slopes of the Campania carbonate massifs and ridges, and frequently represent the main threat to the anthropogenic environment, potentially damaging urban areas, scattered houses, roads, etc. Despite the generally limited volumes involved, the high velocity of movement (from few to tens of metres per second) poses rockfalls among the most dangerous natural hazards to man. Evaluating the rockfall hazard is not an easy task, due to the high number of involved factors, and particularly to the difficulty in determining the properties of the rock mass. In this paper, we illustrate the assessment of the rockfall hazard along a small area of the Sorrento Peninsula (Campania region, southern Italy). Choice of the site was determined by the presence of a road heavily frequented by vehicles. In the area, we have carried out detailed field surveys and software simulations that allow generating simple rockfall hazard maps. Over twenty measurement stations for geo-mechanical characterization of the rock mass have been distributed along a 400-m-long slope of Mount Vico Alvano. Following the internationally established standards for the acquisition of rock mass parameters, the main kinematics have been recognized, and the discontinuity families leading to the different failures identified. After carrying out field experiments by artificially releasing a number of unstable blocks on the rock cliff, the rockfall trajectories along the slope were modelled using 2-D and 3-D programs for rockfall analysis. The results were exploited to evaluate the rockfall hazard along the threatened element at risk.  相似文献   
5.
Every year, and in many countries worldwide, wildfires cause significant damage and economic losses due to both the direct effects of the fires and the subsequent accelerated runoff, erosion, and debris flow. Wildfires can have profound effects on the hydrologic response of watersheds by changing the infiltration characteristics and erodibility of the soil, which leads to decreased rainfall infiltration, significantly increased overland flow and runoff in channels, and movement of soil. Debris-flow activity is among the most destructive consequences of these changes, often causing extensive damage to human infrastructure. Data from the Mediterranean area and Western United States of America help identify the primary processes that result in debris flows in recently burned areas. Two primary processes for the initiation of fire-related debris flows have been so far identified: (1) runoff-dominated erosion by surface overland flow; and (2) infiltration-triggered failure and mobilization of a discrete landslide mass. The first process is frequently documented immediately post-fire and leads to the generation of debris flows through progressive bulking of storm runoff with sediment eroded from the hillslopes and channels. As sediment is incorporated into water, runoff can convert to debris flow. The conversion to debris flow may be observed at a position within a drainage network that appears to be controlled by threshold values of upslope contributing area and its gradient. At these locations, sufficient eroded material has been incorporated, relative to the volume of contributing surface runoff, to generate debris flows. Debris flows have also been generated from burned basins in response to increased runoff by water cascading over a steep, bedrock cliff, and incorporating material from readily erodible colluvium or channel bed. Post-fire debris flows have also been generated by infiltration-triggered landslide failures which then mobilize into debris flows. However, only 12% of documented cases exhibited this process. When they do occur, the landslide failures range in thickness from a few tens of centimeters to more than 6 m, and generally involve the soil and colluvium-mantled hillslopes. Surficial landslide failures in burned areas most frequently occur in response to prolonged periods of storm rainfall, or prolonged rainfall in combination with rapid snowmelt or rain-on-snow events.  相似文献   
6.
7.
8.
9.
Comments are presented on the article by Canora et al. (2012) dealing with karst morphologies driven by sea level stands in the Murge plateau of Apulia, southern Italy. Our comments start from cave levels, that are considered in the cited article as a proof of sea level stands. We argue that the presence of sub‐horizontal passages in cave systems is not a sufficient condition for correlating them with hypothetical past sea level stands. Such a correlation must be based upon identification of speleogenetic features within the karst systems, and/or geological field data. The problems encountered when using cave surveys for scientific research, and their low reliability (especially in the case of old surveys) are then treated, since they represent a crucial point in the paper object of this discussion. Eventually, we present some final consideration on cave levels and terraces, and on the specific case study, pointing out once again to the need in including geological field data to correctly find a correspondance between flat landforms and sea level fluctuations. Our main conclusion is that field data and information on speleogenesis of the underground karst landforms cannot be disregarded in a study that claims to deal with the influence of sea‐level changes on caves. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
10.
The land around Conversano (Apulia, southern Italy) is part of the Murge karst, interesting limestones and dolomitic limestones of Upper Cretaceous age, in a flat environment with sub-horizontal setting. Dolines and karst depressions are the most typical landforms in the area. Filling of these landforms with eluvial deposits locally created the possibility of water stagnancy at the surface. The Conversano territory presents ten karst lakes that represented, until some decades ago, the only water resource available for the local people, who built the typical bell-shaped wells to collect water volumes satisfying local needs during the dry season. Currently, these lakes have no great importance as water supplies, but represent habitats of great naturalistic value that are still able to support the ecological functionality and the wet environments with self-vegetation. Hydrological and hydrogeological studies have been carried out with the aim to fully estimate the related environmental problems. For this purpose, the hydrogeologic data of historical time series have been collected and compared to those of the last 5 years; successively, according to the Thornthwaite method, a hydrological monthly balance has been evaluated to quantify the distribution of water volumes interacting annually between the surface water bodies and the underlying carbonate groundwater. This evaluation has highlighted the need to carefully consider all the parameters concurring to a right definition of water balance for a karst environment, where pedological features, climatic conditions and anthropogenic modifications to the environment represent the elements of a very delicate system. Particularly, on the basis of recent soil map and field surveys, a re-evaluation of the available water capacity, estimated in some 40 mm, has been carried out. The studies have highlighted the need to extend the environmental protection rules to larger areas around the lakes, e.g. at the catchment scale, with definition of buffer zones; in this manner, it will be possible to constantly monitor the protected land and the local anthropogenic activities, that represent real polluting sources for both the surface water resources and the underlying carbonate groundwaters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号