首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   191篇
  免费   10篇
  国内免费   24篇
测绘学   4篇
大气科学   10篇
地球物理   70篇
地质学   93篇
海洋学   19篇
天文学   10篇
综合类   1篇
自然地理   18篇
  2022年   2篇
  2021年   3篇
  2020年   9篇
  2019年   3篇
  2018年   3篇
  2017年   7篇
  2016年   4篇
  2015年   3篇
  2014年   7篇
  2013年   2篇
  2012年   6篇
  2011年   11篇
  2010年   11篇
  2009年   12篇
  2008年   10篇
  2007年   8篇
  2006年   5篇
  2005年   3篇
  2004年   7篇
  2003年   11篇
  2002年   8篇
  2001年   3篇
  2000年   15篇
  1999年   7篇
  1998年   4篇
  1997年   9篇
  1996年   3篇
  1995年   5篇
  1994年   4篇
  1993年   3篇
  1992年   2篇
  1991年   5篇
  1990年   1篇
  1989年   3篇
  1988年   5篇
  1987年   5篇
  1986年   1篇
  1985年   3篇
  1984年   3篇
  1983年   3篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1974年   1篇
排序方式: 共有225条查询结果,搜索用时 0 毫秒
1.
The influence of emergent and submerged macrophytes on flow velocity and turbulence production is demonstrated in a 140 m reach of the River Blackwater in Farnborough, Hampshire, UK. Macrophyte growth occurs in patches and is dominated by Sparganium erectum and Sparganium emersum. In May 2001, patches of S. erectum were already established and occupied 18% of the channel area. The flow adjusted to these (predominantly lateral) patches by being channelled through a narrower cross‐section. The measured velocity profiles showed a logarithmic form, with deviations attributable to topographic control. The channel bed was the main source of turbulence. In September 2001, in‐stream macrophytes occupied 27% of the channel, and overhanging bank vegetation affected 32% of the area. Overall flow resistance, described by Manning's n, showed a threefold increase that could be attributed to the growth of S. emersum in the middle of the channel. Velocity profiles showed different characteristic forms depending on their position relative to plant stems and leaves. The overall velocity field had a three‐dimensional structure. Turbulence intensities were generally higher and turbulence profiles tended to mirror the velocity profiles. Evidence for the generation of coherent eddies was provided by ratios of the root mean square velocities. Spectral analysis identified deviations from the Kolmogorov ?5/3 power law and provided statistical evidence for a spectral short‐cut, indicative of additional turbulence production. This was most marked for the submerged vegetation and, in some instances, the overhanging bank vegetation. The long strap‐like leaves of S. emersum being aligned approximately parallel to the flow and the highly variable velocity field created by the patch arrangement of macrophytes suggest that the dominant mechanism for turbulence production is vortex shedding along shear zones. Wake production around individual stems of S. emersum close to the bed may also be important locally. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
2.
Zooplankton sampling at Station 18 off Concepción (36°30′S and 73°07′W), on an average frequency of 30 days (August 2002 to December 2005), allowed the assessment of seasonal and inter-annual variation in zooplankton biomass, its C and N content, and the community structure in relation to upwelling variability. Copepods contributed 79% of the total zooplankton community and were mostly represented by Paracalanus parvus, Oithona similis, Oithona nana, Calanus chilensis, and Rhincalanus nasutus. Other copepod species, euphausiids (mainly Euphausia mucronata), gelatinous zooplankton, and crustacean larvae comprised the rest of the community. Changes in the depth of the upper boundary of the oxygen minimum zone indicated the strongly seasonal upwelling pattern. The bulk of zooplankton biomass and total copepod abundance were both strongly and positively associated with a shallow (<20 m) oxygen minimum zone; these values increased in spring/summer, when upwelling prevailed. Gelatinous zooplankton showed positive abundance anomalies in the spring and winter, whereas euphausiids had no seasonal pattern and a positive anomaly in the fall. The C content and the C/N ratio of zooplankton biomass significantly increased during the spring when chlorophyll-a was high (>5 mg m−3). No major changes in zooplankton biomass and species were found from one year to the next. We concluded that upwelling is the key process modulating variability in zooplankton biomass and its community structure in this zone. The spring/summer increase in zooplankton may be largely the result of the aggregation of dominant copepods within the upwelling region; these may reproduce throughout the year, increasing their C content and C/N ratios given high diatom concentrations.  相似文献   
3.
A time series of zooplankton sampling carried out at Station 18 off Concepción (36°S, 73°W) from August 2002 to December 2003 allowed the study of annual life cycles of the copepods Calanus chilensis and Centropages brachiatus in association with environmental variability in the coastal upwelling zone. Changes in the abundance of eggs, nauplii, and copepodids were assessed from samples taken at a mean time interval of ca. 20 days. Upwelling variability in near-surface waters was reflected in seasonal changes in salinity, water column stratification, and oxycline depth, as well as a weak seasonal signal in sea surface temperature (1-2 °C). Both copepods exhibited similar life cycles, characterized by continuous reproduction throughout the year. Estimates of generation times, as a function of temperature, were 25-30 days for C. chilensis and 27-35 days for C. brachiatus, predicting about 12 and 10 generations a year, respectively. These estimates were consistent with reproduction pulses observed in the field. It was thus suggested that copepods may grow under non-limiting food conditions in this upwelling area. However, despite continuous reproduction, there were abrupt changes in population sizes along with the disappearance of early naupliar and copepodid stages taking place even during the upwelling season (spring/summer). These changes were attributed to sudden increases in mortality taking place in spring or early summer, after which the populations remained at low levels through the fall and winter. It is thus suggested that, in addition to variability in the physical environment, biological interactions modulating changes in copepod mortality should be considered for understanding copepod life cycles in highly productive upwelling systems.  相似文献   
4.
The electrical structure of the Slave craton   总被引:4,自引:0,他引:4  
The Slave craton in northwestern Canada, a relatively small Archean craton (600×400 km), is ideal as a natural laboratory for investigating the formation and evolution of Mesoarchean and Neoarchean sub-continental lithospheric mantle (SCLM). Excellent outcrop and the discovery of economic diamondiferous kimberlite pipes in the centre of the craton during the early 1990s have led to an unparalleled amount of geoscientific information becoming available.

Over the last 5 years deep-probing electromagnetic surveys were conducted on the Slave, using the natural-source magnetotelluric (MT) technique, as part of a variety of programs to study the craton and determine its regional-scale electrical structure. Two of the four types of surveys involved novel MT data acquisition; one through frozen lakes along ice roads during winter, and the second using ocean-bottom MT instrumentation deployed from float planes.

The primary initial objective of the MT surveys was to determine the geometry of the topography of the lithosphere–asthenosphere boundary (LAB) across the Slave craton. However, the MT responses revealed, completely serendipitously, a remarkable anomaly in electrical conductivity in the SCLM of the central Slave craton. This Central Slave Mantle Conductor (CSMC) anomaly is modelled as a localized region of low resistivity (10–15 Ω m) beginning at depths of 80–120 km and striking NE–SW. Where precisely located, it is spatially coincident with the Eocene-aged kimberlite field in the central part of the craton (the so-called “Corridor of Hope”), and also with a geochemically defined ultra-depleted harzburgitic layer interpreted as oceanic or arc-related lithosphere emplaced during early tectonism. The CSMC lies wholly within the NE–SW striking central zone defined by Grütter et al. [Grütter, H.S., Apter, D.B., Kong, J., 1999. Crust–mantle coupling; evidence from mantle-derived xenocrystic garnets. Contributed paper at: The 7th International Kimberlite Conference Proceeding, J.B. Dawson Volume, 1, 307–313] on the basis of garnet geochemistry (G10 vs. G9) populations.

Deep-probing MT data from the lake bottom instruments infer that the conductor has a total depth-integrated conductivity (conductance) of the order of 2000 Siemens, which, given an internal resistivity of 10–15 Ω m, implies a thickness of 20–30 km. Below the CSMC the electrical resistivity of the lithosphere increases by a factor of 3–5 to values of around 50 Ω m. This change occurs at depths consistent with the graphite–diamond transition, which is taken as consistent with a carbon interpretation for the CSMC.

Preliminary three-dimensional MT modelling supports the NE–SW striking geometry for the conductor, and also suggests a NW dip. This geometry is taken as implying that the tectonic processes that emplaced this geophysical–geochemical body are likely related to the subduction of a craton of unknown provenance from the SE (present-day coordinates) during 2630–2620 Ma. It suggests that the lithospheric stacking model of Helmstaedt and Schulze [Helmstaedt, H.H., Schulze, D.J., 1989. Southern African kimberlites and their mantle sample: implications for Archean tectonics and lithosphere evolution. In Ross, J. (Ed.), Kimberlites and Related Rocks, Vol. 1: Their Composition, Occurrence, Origin, and Emplacement. Geological Society of Australia Special Publication, vol. 14, 358–368] is likely correct for the formation of the Slave's current SCLM.  相似文献   

5.
Mafic granulite xenoliths from the lower crust of the Pannonian Basin are dominated by LREE-depleted bulk-rock compositions. Many of these have MORB-like 143Nd/144Nd but 87Sr/86Sr is elevated relative to most MORBs. Their '18O values cover a wide range from +3.8 to +9.5‰. A group of LREE-enriched mafic granulites have higher 87Sr/86Sr (0.704-0.708) and lower 143Nd/144Nd (0.5128-0.5124), with higher '18O values on average (+7.8 to +10.6‰) than the LREE-depleted granulites. The LREE-enriched granulites are, however, isotopically similar to newly discovered metasedimentary granulite xenoliths. A sublinear correlation in )Hf-)Nd isotope space has a shallower slope than the crust-mantle array, with the metasedimentary rocks forming the low )Hf end member; the radiogenic end is restricted to the LREE-depleted granulites and these overlap the field of MORB. Pb isotopes for the LREE-depleted samples are less radiogenic on average than those of the LREE-enriched and metasedimentary xenoliths, and metasedimentary granulites have consistently higher 208Pb/204Pb. The wide range in '18O over a restricted range in Nd and Sr isotope values, in combination with the predominance of LREE-depleted trace-element compositions, is consistent with an origin as a package of hydrothermally altered oceanic crust. The existence of '18O values lower than average MORB and/or mantle peridotite requires that at least some of these rocks were hydrothermally altered at high temperature, presumably in the oceanic lower crust. The low 143Nd/144Nd of the LREE-enriched mafic granulites cannot be explained by simple mixing between a LREE-depleted melt and an enriched component, represented by the recovered metasediments. Instead, we interpret these rocks as the metamorphic equivalent of the shallowest levels of the ocean crust where pillow basalts are intimately intercalated with oceanic sediments. A possible model is accretion of oceanic crustal slices during subduction and convergence, followed by high-grade metamorphism during the Alpine orogeny.  相似文献   
6.
Mineral‐based pigments have been used for cave paintings and rock art dating as far back as 70–100 ka in Blombos Cave, South Africa. Ancestral indigenous artists used ochre (clay + Fe oxides and hydroxides) for red and yellow pigments in cave art on every inhabited continent for at least 15 000 years, and much longer than that in some localities. Early historic cultures throughout the Middle East, Asia and the Mediterranean basin added other colourful minerals to their palette, including azurite and malachite for blue and green, calcite, gypsum, and diatomaceous earth for white, and charcoal for black. Some of these cultures created additional pigments by roasting or smelting minerals and altering them with vinegar or other organic acids. The use of mineral pigments and pigments of altered minerals using heat and acid continued throughout the Middle Ages and the Renaissance. Similar mineral pigments were used by native peoples in the New World for rock and cave art. Ancestral artists traditionally used water, saliva, oil and fats as binders for their pigments to create their paint.  相似文献   
7.
Many large rivers around the world no longer flow to their deltas, due to ever greater water withdrawals and diversions for human needs. However, the importance of riparian ecosystems is drawing increasing recognition, leading to the allocation of environmental flows to restore river processes. Accurate estimates of riparian plant evapotranspiration (ET) are needed to understand how the riverine system responds to these rare events and achieve the goals of environmental flows. In 2014, historic environmental flows were released into the Lower Colorado River at Morelos Dam (Mexico); this once perennial but now dry reach is the final stretch to the mighty Colorado River Delta. One of the primary goals was to supply native vegetation restoration sites along the reach with water to help seedlings establish and boost groundwater levels to foster the planted saplings. Patterns in ET before, during, and after the flows are useful for evaluating whether this goal was met and understanding the role that ET plays in this now ephemeral river system. Here, diurnal fluctuations in groundwater levels and Moderate Resolution Imaging Spectroradiometer (MODIS) data were used to compare estimates of ET specifically at 3 native vegetation restoration sites during 2014 planned flow events, and MODIS data were used to evaluate long‐term (2002–2016) ET responses to restoration efforts at these sites. Overall, ET was generally 0–10 mm d?1 across sites, and although daily ET values from groundwater data were highly variable, weekly averaged estimates were highly correlated with MODIS‐derived estimates at most sites. The influence of the 2014 flow events was not immediately apparent in the results, although the process of clearing vegetation and planting native vegetation at the restoration sites was clearly visible in the results.  相似文献   
8.
Spatial distribution patterns ofScirpus validus were studied in tidal marshes of the lower Savannah River. The hypothesis that changes in spatial pattern forS. validus would accompany differences in environmental parameters was tested by sampling densities and biomass along environmental gradients of salinity and elevation. Coefficients of dispersion were calculated forS. validus and used to compare spatial patterns among freshwater, midly oligohaline, strongly oligohaline, and mesohaline tidal marshes. Results indicated significantly greater clumping ofS. validus in mesohaline marsh than in freshwater marsh. Only the mildly oligohaline site supported a random population ofS. validus, while the strongly oligohaline marsh supported a uniform spatial distribution. Spatial pattern and relative importance ofS. validus, as well as composition of co-occurring species, changed significantly with changing salinity. The relations between changes in relative importance ofS. validus and differences in soil organic matter and elevation were also significant.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号