首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   122篇
  免费   2篇
  国内免费   11篇
大气科学   10篇
地球物理   40篇
地质学   70篇
海洋学   5篇
天文学   6篇
综合类   3篇
自然地理   1篇
  2023年   1篇
  2022年   1篇
  2020年   2篇
  2019年   3篇
  2018年   2篇
  2017年   4篇
  2016年   5篇
  2015年   1篇
  2014年   6篇
  2013年   27篇
  2012年   13篇
  2011年   13篇
  2010年   1篇
  2008年   1篇
  2007年   3篇
  2005年   3篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1994年   2篇
  1992年   1篇
  1991年   1篇
  1984年   2篇
  1983年   2篇
  1982年   3篇
  1981年   3篇
  1980年   4篇
  1979年   3篇
  1978年   1篇
  1977年   3篇
  1976年   2篇
  1975年   1篇
  1974年   2篇
  1973年   6篇
  1972年   3篇
排序方式: 共有135条查询结果,搜索用时 15 毫秒
1.
The present study deals with the coal fire mapping of East Basuria Colliery, Jharia coalfield, India, using the magnetic method. It is based on the fact that rise in temperature would result significant changes in magnetic susceptibility and thermo-remanent magnetization (TRM) of the overlying rocks. Magnetism increases slowly with the rise of temperature until the Curie temperature. Generally, rock/ overburden loses magnetization and becomes paramagnetic due to heating to Curie temperature, which results with significant reduction in magnetic susceptibility. However, magnetism increases significantly after cooling below the Curie temperature. Several data processing methods such as diurnal correction, reduction to pole (RTP), first and second vertical derivatives have been used for analysis of magnetic data and their interpretation. It is observed that the total magnetic field intensity anomaly of the area varies approximately from 44850 to 47460 nT and the residual magnetic anomaly varies approximately from ?1323 to 1253 nT. The range of the magnetic anomaly after RTP is approximately 1050–1450 nT. About 20 low magnetic anomaly zones have been identified associated with active coal fire regions and 11 high magnetic anomaly zones have been identified associated with non-coal fire regions using vertical derivative techniques.  相似文献   
2.
The Palghat Gap region is located near the centre of the large southern Indian granulite terrane. at the northern edge of the Kodaikanal charnockite massif. The dominant rock types in the region are hornblende-biotite ± orthopyroxene gneisses and charnockites along with minor amounts of intercalated mafic granulite, metapelite and calc-silicate. The P-T estimates from garnetiferous mafic granulites and metapelite samples are generally in the range 9-10 kbar and 800-900 C using both conventional thermobarometric methods and the TWEEQU thermobarometry program. These P-T estimates, which should be taken as minimum values, are among the highest yet reported for South Indian and Sri Lankan granulites. The occurrence of orthopyroxene + plagioclase symplectites around embayed garnet grains in the mafic granulites and cordierite rims around garnet grains in metapelite suggest an isothermal decompression-type path. Similarly, a core-rim P-T trajectory indicates c. 3 and 7 kbar decompression at high temperature in the mafic granulites and metapelite, respectively. In both rock types, the key to the determination of the retrograde P-T path was the recognition of small amounts of second generation plagioclase with a more anorthitic composition than the matrix plagioclase. The preservation of high garnet-pyroxene temperatures in the mafic granulites (despite small garnet grain size) suggests rapid cooling of the terrane. Calculated minimum cooling rates range from 8 to 80 C Ma-1. Such cooling rates are more rapid than those associated with normal isostatic processes and suggest that the terrane was tectonically exhumed at high temperature.  相似文献   
3.
The effect of a conducting overburden on the electromagnetic response of sulphide ore-bodies has been studied with the help of quantitative electromagnetic model experiments. These experiments were conducted at a fixed, crystal controlled, frequency of 100 kHz using a number of transmitter-receiver configurations, though the results discussed here mostly pertain to a horizontal coplanar system. An analysis of the anomaly profiles—after accounting for the regional anomaly—indicates a general enhancement of the response. This is attributed (a) to the concentration of the current lines in the host-rock effected by the embedded target and (b) to the change in the phase and space orientation of the field vectors, brought about by the conducting overburden. The enhancement is most pronounced in the case of non-symmetrical bodies such as veins and ribbon-like structures represented by sheet models, but is also observed to a lesser degree for isometric structures. These results are expected to pave the way for a more accurate interpretation of the induction prospecting data.  相似文献   
4.
On an experimental basis, observations were made with various geophysical methods to locate the ancient gold workings in Kolar Gold Fields, Kolar, India. The results of experimental surveys indicated that two-electrode resistivity surveys with two spacings followed by limited trenching would be able to locate about 70 percent of the ancient workings, at 55-60 percent of the cost of conventional trenching.  相似文献   
5.
The theoretical horizontal resistivity profiles Over an outcropping vertical dyke with two-electrode and Schlumberger electrode systems are discussed. The two-electrode array seems very useful in locating the highly conducting thick or thin vein, while the Schlumberger (gradient) array is suited to detect the conducting vein of low and moderately high resistivity contrast and as well as the resistive vein of all widths and resistivity contrasts. Besides, the inline gradient array has a distinction of establishing a clue to evaluate the resistivity contrast of the vein.  相似文献   
6.
Computations have been made for the effect of ground slope in combination with transmitter coil misorientation on different electromagnetic depth sounding systems and sets of frequency sounding master curves are presented for different angles. The effect of a thin air layer due to the elevation of coils above ground surface has been studied for different systems. Also discussed are the effects due to an error in transmitter-receiver coil separation.  相似文献   
7.
Mirrol Trough of the northeast Atlantic contains five NNE-SSW trending, en echelon, turbidite-filled basins deeper than 5500 m, each ranging from 4 to 10 km in width and 19 to 65 km in length. Trough deposition has consisted mainly of turbidites from adjacent hills and ridges as indicated by the physiography of the region, sediment isopach map, the nature of the sediments in the trough, and benthic foraminiferal depth indicator species. The sedimentation rate on abyssal hills and ridges, as deduced from palaeomagnetic evidence, is 1.36 cm/103 years. Using this sedimentation rate, it is estimated that Mirrol Trough subsided relative to the surrounding area and began receiving sediments between 8.3 and 11.5 m.y. ago; and the deposition of the most recent turbidite has occurred sometime between 29,000 and 44,000 years b.p. Tilting of the base of the most recent turbidite with respect to the basin floor is observed, and this is attributed to relative sinking of the eastern margin of the trough after the deposition of the most recent turbidite.  相似文献   
8.
Computations of the time-domain electromagnetic response of a multi-layered earth have been carried out for different source-receiver coil systems. The primary excitation is a train of half-sinusoidal waveforms of alternating polarity. The conversion into the time-domain involves Fourier series summation of the matched complex mutual coupling ratios of the layered earth models computed by a digital linear filter method. As an example, the response of a perpendicular coil system on the ground surface for two source-receiver separations has been presented for a five-layer earth model. This has been compared with the responses of homogeneous, two-layer, three-layer, and four-layer models. Next, the investigations have been extended to study the problems of equivalence of three-layer models, the intermediate layer of which is either conductive or resistive. For an intermediate conductive layer (H-type), the studies show that in the early portion of the signal the interpretation of a true three-layer earth is possible to some extent, whereas the ambiguity due to equivalence persists in the late samples. On the other hand, for an intermediate resistive layer (K-type), the three-layer earth and its equivalent model cannot be distinguished from each other over the entire sampling period. On the basis of a computational approach, equivalence has been empirically established as √h/ρ=constant for H-type earth-sections, and as h2ρ=constant for K-type earth sections, where h and ρ are respectively the thickness and resistivity of the intermediate layer.  相似文献   
9.
GPS radio occultation(GPS RO) method,an active satellite-to-satellite remote sensing technique,is capable of producing accurate,all-weather,round the clock,global refractive index,density,pressure,and temperature profiles of the troposphere and stratosphere.This study presents planetary-scale equatorially trapped Kelvin waves in temperature profiles retrieved using COSMIC(Constellation Observing System for Meteorology,Ionosphere,and Climate) satellites during 2006-2009 and their interactions with background atmospheric conditions.It is found that the Kelvin waves are not only associated with wave periods of higher than 10 days(slow Kelvin waves) with higher zonal wave numbers(either 1 or 2),but also possessing downward phase progression,giving evidence that the source regions of them are located at lower altitudes.A thorough verification of outgoing longwave radiation(OLR) reveals that deep convection activity has developed regularly over the Indonesian region,suggesting that the Kelvin waves are driven by the convective activity.The derived Kelvin waves show enhanced(diminished) tendencies during westward(eastward) phase of the quasi-biennial oscillation(QBO) in zonal winds,implying a mutual relation between both of them.The El Nino and Southern Oscillation(ENSO) below 18 km and the QBO features between 18 and 27km in temperature profiles are observed during May 2006-May 2010 with the help of an adaptive data analysis technique known as Hilbert Huang Transform(HHT).Further,temperature anomalies computed using COSMIC retrieved temperatures are critically evaluated during different phases of ENSO,which has revealed interesting results and are discussed in light of available literature.  相似文献   
10.
Electrical resistivity method is a versatile and economical technique for groundwater prospecting in different geological settings due to wide spectrum of resistivity compared to other geophysical parameters. Exploration and exploitation of groundwater, a vital and precious resource, is a challenging task in hard rock, which exhibits inherent heterogeneity. In the present study, two-dimensional Electrical Resistivity Tomography (2D-ERT) technique using two different arrays, viz., pole–dipole and pole–pole, were deployed to look into high signal strength data in a tectonically disturbed hard rock ridge region for groundwater. Four selected sites were investigated. 2D subsurface resistivity tomography data were collected using Syscal Pro Switch-10 channel system and covered a 2 km long profile in a tough terrain. The hydrogeological interpretation based on resistivity models reveal the water horizons trap within the clayey sand and weathered/fractured quartzite formations. Aquifer resistivity lies between ~3–35 and 100–200 Ωm. The results of the resistivity models decipher potential aquifer lying between 40 and 88 m depth, nevertheless, it corroborates with the static water level measurements in the area of study. The advantage of using pole–pole in conjunction with the pole–dipole array is well appreciated and proved worth which gives clear insight of the aquifer extent, variability and their dimension from shallow to deeper strata from the hydrogeological perspective in the present geological context.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号