首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
测绘学   1篇
大气科学   1篇
地球物理   4篇
地质学   6篇
海洋学   1篇
天文学   1篇
  2018年   1篇
  2017年   1篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2008年   1篇
  2006年   2篇
  1997年   1篇
  1996年   1篇
  1986年   1篇
  1984年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.

Hurricane surge events have caused devastating damage in active-hurricane areas all over the world. The ability to predict surge elevations and to use this information for damage estimation is fundamental for saving lives and protecting property. In this study, we developed a framework for evaluating hurricane flood risk and identifying areas that are more prone to them. The approach is based on the joint probability method with optimal sampling (JPM-OS) using surge response functions (SRFs) (JPM-OS-SRF). Derived from a discrete set of high-fidelity storm surge simulations, SRFs are non-dimensional, physics-based empirical equations with an algebraic form, used to rapidly estimate surge as a function of hurricane parameters (i.e., central pressure, radius, forward speed, approach angle and landfall location). The advantage of an SRF-based approach is that a continuum of storm scenarios can be efficiently evaluated and used to estimate continuous probability density functions for surge extremes, producing more statistically stable surge hazard assessments without adding measurably to epistemic uncertainty. SRFs were developed along the coastline and then used to estimate maximum surge elevations with respect to a set of hurricane parameters. Integrating information such as ground elevation, property value and population with the JPM-OS-SRF allows quantification of storm surge-induced hazard impacts over the continuum of storm possibilities, yielding a framework to create the following risk-based products, which can be used to assist in hurricane hazard management and decision making: (1) expected annual loss maps; (2) flood damage versus return period relationships; and (3) affected business (e.g., number of business, number of employees) versus return period relationships. By employing several simplifying assumptions, the framework is demonstrated at three northern Gulf of Mexico study sites exhibiting similar surge hazard exposure. The framework results reveal Gulfport, MS, USA is at relatively more risk of economic loss than Corpus Christi, TX, USA, and Panama City, FL, USA. Note that economic processes are complex and very interrelated to most other human activities. Our intention here is to present a methodology to quantify the flood damage (i.e., infrastructure economic loss, number of businesses affected, number of employees in these affected businesses and sales volume in these affected businesses) but not to discuss the complex interactions of these damages with other economic activities and recovery plans.

  相似文献   
2.
This study analyzes how the stochastically generated rainfall time series accounting for the inter-annual variability of rainfall statistics can improve the prediction of watershed response variables such as peak flow and runoff depth. The modified Bartlett–Lewis rectangular pulse (MBLRP) rainfall generation model was improved such that it can account for the inter-annual variability of the observed rainfall statistics. Then, the synthetic rainfall time series was generated using the MBLRP model, which was used as input rainfall data for SCS hydrologic models to produce runoff depth and peak flow in a virtual watershed. These values were compared to the ones derived from the synthetic rainfall time series that is generated from the traditional MBLRP rainfall modeling. The result of the comparison indicates that the rainfall time series reflecting the inter-annual variability of rainfall statistics reduces the biasness residing in the predicted peak flow values derived from the synthetic rainfall time series generated using the traditional MBLRP approach by 26–47 %. In addition, it was observed that the overall variability of the peak flow and run off depth distribution was better represented when the inter-annual variability of rainfall statistics are considered.  相似文献   
3.
A unified picture of the photodissociation of theC 2 H radical has been developed using the results from the latest experimental and theoretical work. This picture shows that a variety of electronic states ofC 2 are formed during the photodissociation of theC 2 H radical even if photoexcitation accesses only one excited state. This is because the excited states have many avoided corssings and near intersections where two electronic states come very close to one another. At these avoided crossings and near intersections, the excited radical can hop from one electronic state to another and access new final electronic states of theC 2 radical. The complexity of the excited state surfaces also explains the bimodal rotational distributions that are observed in all of the electronic states studied. The excited states that dissociate through a direct path are limited by dynamics to produceC 2 fragments with a modest amount of rotational energy, whereas those that dissociate by a more complex path have a greater chance to access all of phase space and produce fragments with higher rotational excitation. Finally, the theoretical transition moments and potential energy curves have been used to provide a better estimate of the photochemical lifetimes in comets of the different excited states of theC 2 H radical. The photochemically active states are the 22+, 22II, 32II, and 32+, with photodissociation rate constants of 1.0×10–6, 4.0×10–6, 0.7×10–6, and 1.3×10–6s–1, respectively. These rate constants lead to a total photochemical lifetime of 1.4×105 s.  相似文献   
4.
Seismic activity at the western Pyrenean edge   总被引:1,自引:1,他引:1  
The present-day seismicity at the westernmost part of the Pyrenean domain reported from permanent networks is of low to moderate magnitude. However, it is poorly constrained due to the scarce station coverage of the area. We present new seismic data collected from a temporary network deployed there for 17 months that provides an enhanced image of the seismic activity and its tectonic implications. Our results delineate the westward continuity of the E–W Pyrenean band of seismicity, through the Variscan Basque Massifs along the Leiza Fault, ending up at the Hendaya Fault. This seismicity belt is distributed on a crustal scale, dipping northward to almost 30 km depth. Other relevant seismic events located in the area can be related to the central segment of the Pamplona fault, and to different E–W thrust structures.  相似文献   
5.
A noble approach of stochastic rainfall generation that can account for inter-annual variability of the observed rainfall is proposed. Firstly, we show that the monthly rainfall statistics that is typically used as the basis of the calibration of the parameters of the Poisson cluster rainfall generators has significant inter-annual variability and that lumping them into a single value could be an oversimplification. Then, we propose a noble approach that incorporates the inter-annual variability to the traditional approach of Poisson cluster rainfall modeling by adding the process of simulating rainfall statistics of individual months. Among 132 gage-months used for the model verification, the proportion that the suggested approach successfully reproduces the observed design rainfall values within 20 % error varied between 0.67 and 0.83 while the same value corresponding to the traditional approach varied between 0.21 and 0.60. This result suggests that the performance of the rainfall generation models can be largely improved not only by refining the model structure but also by incorporating more information about the observed rainfall, especially the inter-annual variability of the rainfall statistics.  相似文献   
6.
Traditionally, stream and sub‐watershed characterization in GIS has been accom‐ plished using a DEM‐based terrain analysis approach; however, there is a large amount of existing vector hydrographic data difficult to accurately reproduce using DEMs. WaterNet is a GIS/hydrologic application for the integration and analysis of stream and sub‐watershed networks in vector format. Even with vector data, hydrologic inconsistencies between streams and sub‐watersheds do exist, and are revealed in the form of streams crossing drainage divides and sub‐watersheds with more than one outlet. WaterNet rectifies these inconsistencies and couples the two datasets. Most algorithms involving traces of dendritic networks employ a form of tree traversal which requires topologic information to be organized into specialized data structures. On the contrary, WaterNet develops topologic relationships from GIS attribute tables, which, in combination with sorting and querying algorithms, make the calculation process efficient and easy to implement. With the topologic relationships of the streams and sub‐watersheds, WaterNet can perform traces to calculate cumulative network parameters, such as flow lengths and drainage areas. WaterNet was applied to the catchment of the Texas Gulf coast for a total of 100 cataloging units (411,603 km2) and 60,145 stream lines (183,228 km).  相似文献   
7.
Tens of millions of people around the world are already exposed to coastal flooding from tropical cyclones. Global warming has the potential to increase hurricane flooding, both by hurricane intensification and by sea level rise. In this paper, the impact of hurricane intensification and sea level rise are evaluated using hydrodynamic surge models and by considering the future climate projections of the Intergovernmental Panel on Climate Change. For the Corpus Christi, Texas, United States study region, mean projections indicate hurricane flood elevation (meteorologically generated storm surge plus sea level rise) will, on average, rise by 0.3 m by the 2030s and by 0.8 m by the 2080s. For catastrophic-type hurricane surge events, flood elevations are projected to rise by as much as 0.5 m and 1.8 m by the 2030s and 2080s, respectively.  相似文献   
8.
Seismic studies of the last ten years in the Pyrenees (deep seismic profiles, fan profiles at critical distance, teleseismic travel-time residuals, seismicity from temporary networks) and their most significant results concerning crustal thickness in the different structural units of the range, sharpness of the transition between these units at depth, and east-west lateral evolution are reviewed in this paper. Focal mechanisms for three recent earthquakes ofM4 are given, and connections of local seismicity with major tectonic structures such as the North Pyrenean Fault and its western prolongation at depth are described.  相似文献   
9.
Results from a recent earthquake in the Eastern Pyrenees are presented and the seismotectonics of the region is analyzed from the presently available data. On 26 September 1984 an earthquake (ML = 4.4) took place in the area of the historical destructive earthquake of 1428. Several portable stations installed in the epicentral area to record aftershocks permitted of defining a precise location at 42°19.2′N, 2°10.2′E and 5 km depth. A maximum felt intensity of V (MSK) is obtained from macroseismic data. The epicentral location lies within a block bounded by E-W-trending structures and the focal solution shows right-lateral shearing with a NW-SE pressure axis.The seismicity in the Eastern Pyrenees shows a complex pattern which can be associated with both E-W fractures and NE-SW fault systems. Focal solutions of another two recent earthquakes of ML ~ 4, with differences in horizontal pressure axis, are also discussed.  相似文献   
10.
Hurricane surge events have caused devastating damage in active-hurricane areas all over the world. The ability to predict surge elevations and to use this information for damage estimation is fundamental for saving lives and protecting property. In this study, we developed a framework for evaluating hurricane flood risk and identifying areas that are more prone to them. The approach is based on the joint probability method with optimal sampling (JPM-OS) using surge response functions (SRFs) (JPM-OS-SRF). Derived from a discrete set of high-fidelity storm surge simulations, SRFs are non-dimensional, physics-based empirical equations with an algebraic form, used to rapidly estimate surge as a function of hurricane parameters (i.e., central pressure, radius, forward speed, approach angle and landfall location). The advantage of an SRF-based approach is that a continuum of storm scenarios can be efficiently evaluated and used to estimate continuous probability density functions for surge extremes, producing more statistically stable surge hazard assessments without adding measurably to epistemic uncertainty. SRFs were developed along the coastline and then used to estimate maximum surge elevations with respect to a set of hurricane parameters. Integrating information such as ground elevation, property value and population with the JPM-OS-SRF allows quantification of storm surge-induced hazard impacts over the continuum of storm possibilities, yielding a framework to create the following risk-based products, which can be used to assist in hurricane hazard management and decision making: (1) expected annual loss maps; (2) flood damage versus return period relationships; and (3) affected business (e.g., number of business, number of employees) versus return period relationships. By employing several simplifying assumptions, the framework is demonstrated at three northern Gulf of Mexico study sites exhibiting similar surge hazard exposure. The framework results reveal Gulfport, MS, USA is at relatively more risk of economic loss than Corpus Christi, TX, USA, and Panama City, FL, USA. Note that economic processes are complex and very interrelated to most other human activities. Our intention here is to present a methodology to quantify the flood damage (i.e., infrastructure economic loss, number of businesses affected, number of employees in these affected businesses and sales volume in these affected businesses) but not to discuss the complex interactions of these damages with other economic activities and recovery plans.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号