首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
地球物理   1篇
地质学   13篇
  2008年   1篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1989年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
排序方式: 共有14条查询结果,搜索用时 31 毫秒
1.
Abstract. The petrography, chemical, fluid inclusion and isotope analyses (O, Rb-Sr) were conducted for the shale samples of the Mount McRae Shale collected from the Tom Price, Newman, and Paraburdoo mines in the Hamersley Basin, Western Australia. The Mount McRae Shale at these mines occurs as a footwall unit of the secondary, hematite-rich iron ores derived from the Brockman Iron Formation, one of the largest banded iron formations (BIFs) in the world. Unusually low contents of Na, Ca, and Sr in the shales suggest that these elements were leached away from the shale after deposition. The δ18O (SMOW) values fall in the range of + 15.0 to +17.9 per mil and show the positive correlation with calculated quartz/sericite ratios of the shale samples. This suggests that the oxygen isotopic compositions of shale samples were homogenized and equilibrated by postdepositional event. The pyrite nodules hosted by shales are often rimmed by thin layers of silica of varying crystallinity. Fluid inclusions in quartz crystals rimming a pyrite nodule show homogenization temperatures ranging from 100 to 240C for 47 inclusions and salinities ranging from 0.4 to 12.3 wt% NaCl equivalent for 18 inclusions. These fluid inclusion data give direct evidence for the hydrothermal activity and are comparable to those of the vein quartz collected from the BIF-derived secondary iron ores (Taylor et al, 2001). The Rb-Sr age for the Mount McRae Shale is 1,952 ± 289 Ma and at least 200 million years younger than the depositional age of the Brockman Iron Formation of ∼ 2.5 Ga in age. All the data obtained in this study are consistent with the suggestion that high temperature hydrothermal fluids were responsible for both the secondary iron ore formation and the alteration of the Mount McRae Shale.  相似文献   
2.
The rates of chemical reactions between aqueous sulfates and sulfides are essentially identical to sulfur isotopic exchange rates between them, because both the chemical and isotopic reactions involve simultaneous oxidation of sulfide-sulfur atoms and reduction of sulfate-sulfur. The rate of reaction can be expressed as a second order rate law: R = k·[∑SO42?]·[∑S2?], where R is the overall rate, k is the rate constant and [∑SO42?] and [∑S2?] are molal concentrations. We have computed the rate constants from the available experimental data on the partial exchange of sulfur isotopes between aqueous sulfates and sulfides using the rate law established by us: ln(αe ? ααe ? α0) = ? kt([∑SO42?] + [∑S2?]), where t is time and α0, α, and αe are, respectively, the fractionation factors at t = 0 (the initial condition), at the end of experiment, and at equilibrium. The equilibrium fractionation factor can be expressed as: 1000 ln αe = 6.463 × 106T2 + 0.56 (±.5) (T in Kelvin).The rate constants are strongly dependent on T and pH, but not in as simple a manner as suggested by Igumnov (1976). Our rate constants in Na-bearing hydrothermal solutions decrease by 1 order of magnitude with an increase in pH by 1 unit at pH's less than ~3, remain constant in the pH range of ~4 to ~7, and again decrease at pH >7. The activation energy for the reaction also depends on pH: 18.4 ± 1 kcal/mole at pH = 2, 29.6 ± 1 kcal/mole at pH = 4 to 7, and between 40 and 47 kcal/mole at pH around 9. The observed pH dependence of the rate constant and of the activation energy can be best explained by a model involving thiosulfate molecules as reaction intermediates, in which the intramolecular exchange of sulfur atoms in thiosulfates becomes the rate determining step.The rate constants obtained in this study were used to compute the changes in the isotopic fractionation factors between aqueous sulfates and sulfides during cooling of fluids. Comparisons with data of coexisting sulfate-sulfide minerals in hydrothermal deposits, suggest that simple cooling was not a likely mechanism for coprecipitation of sulfate and sulfide minerals at temperatures below 350°C. Mixing of sulfide-rich solutions with sulfate-rich solutions at or near the depositional sites is a more reasonable process for explaining the observed fractionation.The degree of attainment of chemical equilibrium between aqueous sulfates and sulfides in a hydrothermal system, and the applicability of aO2-pH type diagrams to mineral deposits, depends on the ∑S content and the thermal history of the fluid, which in turn is controlled by the flow rate and the thermal gradient in the system.The rates of sulfate reduction by non-bacterial processes involving a variety of reductants are also dependent on T, pH, [∑SO42?], and [∑S2?], and appear to be fast enough to become geochemically important at temperatures above about 200°C.  相似文献   
3.
The first and possibly only major rise of atmospheric oxygen, from pO2 ≤ 0.1% PAL (the present atmospheric level) to pO2 ≥ 10% PAL, appears to have occurred sometime before 2 Ga ago, although the exact time of and the cause(s) for the rise have been hotly debated. Equally important questions on the atmospheric oxygen concern its stability, especially the mechanisms regulating the atmospheric pO2 level and the causes and magnitude of pO2 variations since the first major rise of atmospheric oxygen. Previous efforts to model the pO2 variation during the Phanerozoic time have typically relied on secondary information, such as the carbon and sulfur isotopic records of sedimentary rocks, and on simple dynamics of the geochemical cycles of O, C, S, and P based on box-type models. As a result, many kinetic questions about the variation and stability of atmospheric oxygen could not have been answered. Here we quantitatively evaluate the dynamics and stability of atmospheric O2 and CO2, using recent experimental data, field observations, and a new model for the C-O coupled geochemical cycles. We examine the change with time in the fluxes of various compounds (O2, CO2, phosphate, organic C, carbonate C, C-bearing reduced volcanic gases, and C-free reduced volcanic gases) among the various reservoirs (atmosphere, soil, surface ocean, deep ocean, the lower crust and mantle, and upper crust) under a variety of scenarios. Our model does not assume steady-state fluxes for any of the reservoirs. Rather, the model incorporates the kinetic experimental data on oxidation of coal, a proxy for kerogen, the dynamics of soil formation and erosion, the kinetics of decomposition of organic matter in the Oceans by aerobic and anaerobic bacteria, the equilibrium ocean-atmosphere carbonate model, the observed relationships among the organic burial flux, dissolved O2 content of deep ocean, and sedimentation rates, and the three-box model ocean. The important parameters that strongly influence the dynamics of atmospheric O2, are found to be (a) the total area of soil formation on Earth; (b) the average soil depth; (c) the average rate of physical erosion of soils, which is linked to the average rate of accumulation of clastic sediments in the oceans; (d) the composition and flux of volcanic gas; and (e) the level of atmospheric CO2. We develop kinetic equations linking these parameters to the production and consumption fluxes of atmospheric oxygen and also to stable pO2 values. Considering the likely ranges of variations in these parameters in geologic history, we suggest that the atmospheric pO2 level is likely to have stayed within a very narrow range of 0.6-2 PAL and that the entire ocean, except for local euxinic basins, is likely to have been basically oxygenated since the first major rise of atmospheric oxygen more than 2 Ga ago.  相似文献   
4.
Ohmoto H 《Geology》1996,24(12):1135-1138
The loss of Fe from some pre-2.2 Ga paleosols has been considered by previous investigators as the best evidence for a reduced atmosphere prior to 2.2 Ga. I have examined the behavior of Fe in both pre- and post-2.2 Ga paleosols from depth profiles of Fe3+/Ti, Fe2+/Ti, and sigma Fe/Ti ratios, and Fe3+/Ti vs. Fe2+/Ti plots. This new approach reveals a previously unrecognized history of paleosols. Essentially all paleosols, regardless of age, retain some characteristics of soils formed under an oxic atmosphere, such as increased Fe3+/Ti ratios from their parental rocks. The minimum oxygen pressure (PO2) for the 3.0-2.2 Ga atmosphere is calculated to be about 1.5% of the present atmospheric level, which is the same as that for the post-1.9 Ga atmosphere. The loss of sigma Fe, common in paleosol sections of all ages, was not due to a reducing atmosphere, but to reductive dissolution of ferric hydroxides formed under an oxic atmosphere. This reductive dissolution of ferric hydroxides occurred either (1) after soil formation by hydrothermal fluids or (2) during and/or after soil formation by organic acids generated from the decay of terrestrial organic matter. Terrestrial biomass on the early continents may have been more extensive than previously recognized.  相似文献   
5.
Fifty-eight rock chips from fifteen samples of sedimentary rocks from the Ramah Group (approximately 1.9 Ga) in northeastern Labrador, Canada, were analyzed for major and minor elements, including C and S, to elucidate weathering processes on the Earth's surface about 1.9 Ga ago. The samples come from the Rowsell Harbour, Reddick Bight, and Nullataktok Formations. Two rock series, graywackes-gray shales of the Rowsell Harbour, Reddick Bight and Nullataktok Formations, and black shales of the Nullataktok Formation, are distinguishable on the basis of lithology, mineralogy, and major and trace element chemistry. The black shales show lower concentrations than the graywackes-gray shales in TiO2 (0.3-0.7 wt% vs. 0.7-1.8 wt%), Al2O3 (9.5-20.1 wt% vs. 13.0-25.0 wt%), and sigma Fe (<1 wt% vs. 3.8-13.9 wt% as FeO). Contents of Zr, Th, U, Nb, Ce, Y, Rb, Y, Co, and Ni are also lower in the black shales. The source rocks for the Ramah Group sediments were probably Archean gneisses with compositions similar to those in Labrador and western Greenland. The major element chemistry of source rocks for the Ramah Group sedimentary rocks was estimated from the Al2O3/TiO2 ratios of the sedimentary rocks and the relationship between the major element contents (e.g., SiO2 wt%) and Al2O3/TiO2 ratios of the Archean gneisses. This approach is justified, because the Al/Ti ratios of shales generally retain their source rock values; however, the Zr/Al, Zr/Ti, and Cr/Ni ratios fractionate during the transport of sediments. The measured SiO2 contents of shales in the Ramah Group are generally higher than the estimated SiO2 contents of source rocks by approximately 5 wt%. This correction may also have to be applied when estimating average crustal compositions from shales. Two provenances were recognized for the Ramah Group sediments. Provenance I was comprised mostly of rocks of bimodal compositions, one with SiO2 contents approximately 45 wt% and the other approximately 65 wt%, and was the source for most sedimentary rocks of the Ramah Group, except for black shales of the Nullataktok Formation. The black shales were apparently derived from Provenance II that was comprised mostly of felsic rocks with SiO2 contents approximately 65 wt%. Comparing the compositions of the Ramah Group sedimentary rocks and their source rocks, we have recognized that several major elements, especially Ca and Mg, were lost almost entirely from the source rocks during weathering and sedimentation. Sodium and potassium were also leached almost entirely during the weathering of the source rocks. However, significant amounts of Na were added to the black shales and K to all the rock types during diagenesis and/or regional metamorphism. The intensity of weathering of source rocks for the Ramah Group sediments was much higher than that of typical Phanerozoic sediments, possibly because of a higher PCO2 in the Proterozoic atmosphere. Compared to the source rock values, the Fe3+/Ti ratios of many of the graywackes and gray shales of the Ramah Group are higher, the Fe2+/Ti ratios are lower, and the sigma Fe/Ti ratios are the same. Such characteristics of the Fe geochemistry indicate that these sedimentary rocks are comprised of soils formed by weathering of source rocks under an oxygen-rich atmosphere. The atmosphere about 1.9 Ga was, therefore, oxygen rich. Typical black shales of Phanerozoic age exhibit positive correlations between the organic C contents and the concentrations of S, U, and Mo, because these elements are enriched in oxygenated seawater and are removed from seawater by organic matter in sediments. However, such correlations are not found in the Ramah Group sediments. Black shales of the Ramah Group contain 1.7-2.8 wt% organic C, but are extremely depleted in sigma Fe (<1 wt% as FeO), S (<0.3 wt%), U (approximately l ppm), Mo (<5 ppm), Ni (<2 ppm), and Co (approximately 0 ppm). This lack of correlation, however, does not imply that the approximately 1.9 Ga atmosphere-ocean system was anoxic. Depletion of these elements from the Ramah Group sediments may have occurred during diagenesis.  相似文献   
6.
The mineralogy of five groups of hydrothermal chimneys from the East Pacific Rise has been examined. Three of the chimneys, where the exit temperature of the hydrothermal fluids was close to 350°C, are rich in copper sulfides. Exit temperatures from the other two chimneys were less than 300°C; in these, the chimney walls are rich in zinc sulfide. The major sulfides in the chimneys as a whole were found to be wurtzite, chalcopyrite, pyrite, and cubanite. Anhydrite is always the dominant sulfate, and is present in all the deposits. Silicates are also present but in relatively minor amounts. There are considerable differences in the mineralogy of sulfides, sulfates, and silicates between the active and inactive vent deposits.The isotopic composition of sulfur in anhydrites from active vents is close to that of seawater; the δ34S values of the sulfides range from +1.3 to +4.1‰. The isotopic composition of sulfur in the anhydrites is consistent with a derivation predominantly from seawater sulfate. The sulfur in the sulfides must have a complex origin including contributions from both sulfur in basalts and sulfide produced by reduction of sulfate in seawater. Mixing of H2S-dominated hydrothermal fluids with cold seawater near the seafloor resulted in the precipitation of non-equilibrium assemblages of sulfides and sulfates.  相似文献   
7.
8.
A submillimeter‐scale variation of δ18O in quartz was identified in chert and Fe‐oxide mesobands of the Brockman Iron Formation, Western Australia, using an in situ CO2‐laser fluorination technique. The total range of variation is 11.2–23.0‰, with >5‰ variations within a single mesoband of approximately 2 cm thickness. These data contradict most previous works, which have suggested that banded iron formations are isotopically homogeneous. The present sample was obtained outside of the iron mining area, and as such is considered to have been less altered by the hydrothermal event recently shown to be responsible for the formation of the iron ore. The data suggest that the largest Paleoproterozoic banded iron formations may have formed not in a stable, quiescent sea, but instead as a result of increased influx of iron‐ and silica‐rich solutions during periods of increased magmatism and submarine hydrothermal activity in a rift basin environment.  相似文献   
9.
Formation of volcanogenic massive sulfide deposits: The Kuroko perspective   总被引:3,自引:0,他引:3  
The main objective of this paper is to identify the geochemical, hydrological, igneous and tectonic processes that led to the variations in the physical (size, geometry) and chemical (mineralogy, metal ratios and zoning) characteristics of volcanogenic massive sulfide deposits with respect to space (from a scale of mining district size area to a global scale) and time (from a < 10 000 year time scale to a geologic time scale).All volcanogenic massive sulfide deposits (VMSDs) appear to have formed in extensional tectonic settings, such as at mid ocean spreading centers, backarc spreading centers, and intracontinental rifts (and failed rifts). All VMSDs appear to have formed in submarine depressions by seawater that became ore-forming fluids through interactions with the heated upper crustal rocks. Submarine depressions, especially those created by submarine caldera formation and/or by large-scale tectonic activities (e.g., rifting), become most favorable sites for the formation of large VMSDs because of hydrological, physical and chemical reasons.The fundamental processes leading to the formation of VMSDs include the following six processes:
1. (1) Intrusion of a heat source (typically a 103 km size pluton) into an oceanic crust or a submarine continental crust causes deep convective circulation of seawater around the pluton. The radius of a circulation cell is typically 5 km. The temperature of fluids that discharge on the seafloor increases with time from the ambient temperature to a typical maximum of 350°C, and then decreases gradually to the ambient temperatures in a time scale of 100 to 10 000 years. The majority of sulfide and sulfate mineralization occurs during the waxing stage of hydrothermal activity.
2. (2) Reactions between low temperature (T < 150°C) country rocks with downward percolating seawater cause to precipitate seawater SO2−4 as disseminated gypsum and anhydrite in the country rocks.
3. (3) Reactions of the “modified” seawater with higher-temperature rocks at depths during the waxing stage cause the transformation of the “seawater” to metal- and H2S-rich ore-forming fluids. The metals and sulfide sulfur are leached from the county rocks; the previously formed gypsum and anhydrite are reduced by Fe2+-bearing minerals and organic matter, providing additional H2S. The mass of high temperature rocks that provide the metals and reduced sulfur is typically 1011 tons ( 40 km3 in volume). The roles of magmatic fluids or gases are minor in most massive sulfide systems, except for SO2 to produce acid-type alteration in some systems.
4. (4) Reactions between the ore-forming fluids and cooler rocks in the discharge zone cause alteration of rocks and precipitation of some ore minerals in the stockwork ores.
5. (5) Mixing of the ore-forming fluids with local seawater within unconsolidated sediments and/or on the seafloor causes precipitation of “primitive ores” with the black ore mineralogy (sphalerite + galena + pyrite + barite + anhydrite).
6. (6) Reactions between the “primitive ores” with later and hotter hydrothermal fluids cause transformation of “primitive ores” to “matured ores” that are enriched in chalcopyrite and pyrite.
Variations in the mineralogical and elemental characteristics, the geometry, and the size of submarine hydrothermal deposits are controlled by the following four parameters:
1. (A) The chemical and physical characteristics of seawater (composition, temperature, density), which depend largely on the geographical settings (e.g., equatorial evaporating basins),
2. (B) The chemical and physical characteristics of the plumbing system (lithology, fractures),
3. (C) The thermal structure of the plumbing system, which is determined largely by the ambient geothermal gradient, and the size and temperature of the intrusive, and
4. (D) The physical characteristics of the seafloor (depth, basin topography).
For example, the submarine hydrothermal deposits developed in basaltic plumbing systems are generally poor in Pb and Ba compared to those developed in felsic plumbing systems. The lower temperature systems are generally poorer in sulfides, but richer in iron oxides and sulfates. The higher temperature and larger hydrothermal systems tend to produce chalcopyrite and pyrite rich ores. Contrasts in the metal ratios between the Noranda-type Archean VMSDs and the younger VMSDs reflect the differences in the geothermal gradient of the plumbing systems. The submarine hydrothermal deposits developed in the near equatorial regions tend to form large continuous bedded type ores because of the likeliness of creating large stratified basins.The basic processes of submarine hydrothermal mineralization have remained essentially the same throughout the geologic history, from at least 3.5 billion year ago to the present.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号