首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
地质学   6篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2010年   1篇
  2005年   1篇
  2003年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
A Variscan foreland in western Poland comprises two NW-trending basement highs, which are concealed under Carboniferous through Triassic strata of the Fore-Sudetic Monocline (FSM). Both highs consist of multiply deformed quartz-sericite - albite - chlorite phyllites of unknown protolith age. 40Ar/39Ar laser probe dating of white micas in up to 0.5-mm-thick mica layers, which form the S2 axial-plane foliation in phyllites of the Wolsztyn-Leszno High, yielded an age of 340.1DŽ.6 Ma for the lower greenschists facies metamorphism and probably also for the F2 folding. This deformation was associated and followed by thrusting, which brought about the basement highs. The latter delivered clasts to overlying late Viséan-early Namurian flysch basin that was mainly sourced from the Saxothuringian Sudetes in which most of the deformation occurred between 345-335 Ma. The FSM basement may represent an independent terrane, referred to as the Wielkopolska terrane, belonging to the Armorican Terrane Assemblage.  相似文献   
2.
3.
The Strzelin Massif in SW Poland (Central European Variscides) records a protracted igneous evolution, with three main magmatic stages: (1) tonalitic I, (2) granodioritic and (3) tonalitic II/granitic. In the northern part of this Massif, the Strzelin intrusion proper comprises three successively emplaced rock types: a medium-grained biotite granite (303 ± 2 Ma), a fine-grained biotite granite (283 ± 8 Ma) and a fine-grained biotite-muscovite granite; based on field evidence, the third variety postdates both types of the biotite granites. The structural data from the three granites, including their parallel, approximately E–W striking and steeply dipping lithological contacts and ENE–WSW trending subhorizontal magmatic lineations, suggest that the emplacement of all three successive granite varieties was controlled by an active, long-lived strike-slip fault, striking ESE–WNW, with a dextral sense of movement. After the emplacement of the youngest biotite-muscovite granite, the intrusion underwent brittle extension which produced “Q joints” striking NNW–SSE to N–S and dipping at 55–70° WSW to W, and showing evidence of broadly N–S directed sinistral displacements. The structural observations, supported by new geochronological data, indicate that the internal structure of the composite granitoid intrusion, including the faint magmatic foliation and lineation, formed in a long-lived strike-slip setting, different from the subsequent, post-emplacement extensional tectonics that controlled the development of brittle structures.  相似文献   
4.
Approximately 500-Ma-old orthogneisses are widespread in the eastern part of the Variscan belt and are commonly interpreted to have intruded mica-schist series of assumed Neoproterozoic age. New SHRIMP zircon ages of quartzofeldspathic metavolcanogenic rocks of the mica schist series in the eastern part of the Karkonosze-Izera Massif (SW Poland) indicate that they are late Cambrian/early Ordovician rather than Neoproterozoic in age, based on the zircon age spectra distributed mainly between ca. 500 and 660 Ma (with a few Proterozoic inherited minimum ages of ca. 970 and 1,825 Ma). Younger zircon dates, dispersed between ca. 412 and 464 Ma, are interpreted as a result of Pb-loss likely caused by subsequent metamorphism. Consequently, the felsic metavolcanogenic rocks appear to be roughly contemporaneous with the intrusion of ca. 500-Ma-old orthogneiss protoliths (with the pooled concordia age of 487 ± 8 Ma interpreted as the best approximation of the protolith intrusive age). Field relationships, petrological and geochemical features of the felsic and mafic rocks studied support a model in which the accompanying mica schist series are not the original country rocks to the ca. 500 Ma granite intrusions, and indicate that their recent close proximity is the result of tectonic juxtaposition. However, both the mica schists enclosing the bimodal metavolcanic rocks, and the orthogneisses, are interpreted to represent a Cambro-Ordovician passive continental margin sequence being part of the Saxothuringian domain. They are tectonically overlain to the east by HP/T metamorphic units, comprising MORB-type metaigneous rocks, and delineating a tectonic suture separating the Saxothuringian block in the west from an assumed continental block (Tepla-Barrandian) to the south-east.  相似文献   
5.
The Izera Block in the West Sudetes, which is composed of granites, gneisses (and transitional granite-gneisses) and minor mica schists, is one of the largest outcrops of Early Palaeozoic (ca. 500 Ma) metagranitoid rocks in the basement units of the Variscides of Central Europe. The Izera granites show S-type features: magmatic cordierite, relict garnet and sillimanite, lack of mafic enclaves, and absence of coexisting tonalites and diorites. The paucity of pegmatites indicates that the granitic magma was relatively dry. The S-type character of these granites is further supported by their peraluminous character (A/CNK 1.0–1.63), high content of normative corundum (up to 3.5%) and relatively high 87Sr /86Sr initial ratio. The chemical variation of these rocks was controlled by the fractional crystallization of plagioclase (CaO, Sr, Eu/Eu*), biotite and cordierite (Al2O3, MgO, FeO), zircon (Zr, Hf) and monazite (REE). Initial Nd values range from –5.2 to –6.9 (mean: –5.9, SD=0.6). These largely negative Nd values imply that the granitic magmas emplaced ca. 500 Ma were extracted from a source reservoir that was strongly enriched in LREE (i.e., with low Sm/Nd ratio) on a time-integrated basis. The relatively consistent depleted mantle model ages (1,730–2,175 Ma; mean: 1,890 Ma) is in agreement with the earlier reported presence of ca. 2.1 Ga old inherited Pb component in zircon from the closely related Rumburk granite. This points to an old (Early Proterozoic) crustal residence age of the inferred metasedimentary protoliths of the Izera granitoids, with only minor contribution to their protoliths of juvenile components of Late Proterozoic/Early Palaeozoic age. Although the Izera granites show some trace element features reminiscent of syn-collisional or post-collisional granitoids, they more likely belong to the broad anorogenic class. Our data corroborate some previous interpretations that granite generation was connected with the Early Palaeozoic rifting of the passive margin of the Saxothuringian block, well documented in the region by bimodal volcanic suites of similar age (Kaczawa Unit, eastern and southern envelope of the Karkonosze–Izera Block). In this scenario, granite magmatism and bimodal volcanism would represent two broadly concomitant effects of a single major event of lithospheric break-up at the northern edge of Gondwana.  相似文献   
6.
Resolving time differences between successive magmatic pulses in composite granitoid plutons is often a difficult task. High-precision CA-ID-TIMS zircon ages obtained from such a pluton, the Variscan Karkonosze Granite (NE part of the Bohemian Massif), provide evidence that the crystallization of the two main granite facies, porphyritic and equigranular, happened between 312.5 ± 0.3 and 312.2 ± 0.3 Ma, thus unresolvable at the 0.08–0.1 % precision level of a single 206Pb/238U age. This finding is at odds with most other previous dating attempts and asks for a re-evaluation of the previous scattered geochronological data. The main reasons for the scatter of the earlier dates obtained by various techniques can include analytical causes, the presence of older inheritance and disturbance of the U–Pb isotopic system, due to zircon metamictization (enhanced by high-U content in zircon) or late- and post-magmatic alteration.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号