首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
地球物理   3篇
地质学   6篇
  2020年   1篇
  2016年   1篇
  2011年   1篇
  2010年   1篇
  2008年   2篇
  2006年   1篇
  1997年   1篇
  1991年   1篇
排序方式: 共有9条查询结果,搜索用时 62 毫秒
1
1.
Subaqueous pyroclastic flows and ignimbrites: an assessment   总被引:2,自引:0,他引:2  
An assessment of the literature on subaqueous pyroclastic flows and their deposits shows that the term pyroclastic flow is frequently used loosely to describe primary, hot gas-rich pyroclastic flows, mass-flows which resulted from the transformation of gassupported flows into water-supported ones, and secondary mass-flows carrying redeposited pyroclastic debris. Based on subaerial pyroclastic flows, the term pyroclastic flow should be restricted to demonstrably hot, gas-rich mass-flows of pyroclastic debris. Using this definition, very few examples of subaqueous pyroclastic deposits with evidence for hot emplacement and of having been wholly submerged have been described. In the majority of these cases, the evidence for a hot state of emplacement and for the subaqueous nature of the host depositional environment is inadequate. The only unequivocal cases of hot pyroclastic flow deposits with adequate supporting evidence are the Ordovician nearshore, shallow marine ignimbrites of Ireland and Wales, and Miocene ignimbrites of southwest Japan, resulting from the passage of subaerially erupted pyroclastic flows into shallow water. Other possible examples are near-vent dense clast deposits in the Donzurobo Formation of Japan, possible submarine intra-caldera ponded ignimbrite successions in California and Wales, and near-vent pumiceous deposits of Ramsay Island, Wales. All other purported cases are either clearly the result of water-supported mass-flow transportation and deposition (debris avalanches, debris flows, turbidity currents), or lack adequate supporting evidence regarding the heat state or the palaeoenvironment. Only the shallow marine ignimbrites of Ireland and Wales show adequate evidence of welding, but even these could have been nearly wholly exposed above sea-level when welding occurred. We conclude that when pyroclastic flows enter water they are generally disrupted explosively and/or ingest water and transform into water-supported mass-flows, and we suggest the various scenarios in which this occurs. There is no evidence to suggest that welding in wholly subaqueous environments is common.  相似文献   
2.
The power-law exponent (n) in the equation: D=cL n , with D = maximum displacement and L = fault length, would be affected by deviations of fault trace length. (1) Assuming n=1, numerical simulations on the effect of sampling and linkage on fault length and length–displacement relationship are done in this paper. The results show that: (a) uniform relative deviations, which means all faults within a dataset have the same relative deviation, do not affect the value of n; (b) deviations of the fault length due to unresolved fault tip decrease the values of n and the deviations of n increase with the increasing length deviations; (c) fault linkage and observed dimensions either increase or decrease the value of n depending on the distribution of deviations within a dataset; (d) mixed deviations of the fault lengths are either negative or positive and cause the values of n to either decrease or increase; (e) a dataset combined from two or more datasets with different values of c and orders of magnitude also cause the values of n to deviate. (2) Data including 19 datasets and spanning more than eight orders of fault length magnitudes (10−2–105 m) collected from the published literature indicate that the values of n range from 0.55 to 1.5, the average value being 1.0813, and the peak value of n d (double regression) is 1.0–1.1. Based on above results from the simulations and published data, we propose that the relationship between the maximum displacement and fault length in a single tectonic environment with uniform mechanical properties is linear, and the value of n deviated from 1 is mainly caused by the sampling and linkage effects.  相似文献   
3.
ABSTRACT

The Mesa Central of Mexico (MC) is an elevated plateau located 2000 m above sea level in central Mexico, where intrusions outcrop that register the history of exhumation-erosion occurring during the Late Cretaceous-Paleogene. The tectonic history of the region records formation of the Late Cretaceous-Paleogene ‘Mexican orogen’; this was followed by extension of the entire region and several plutons were then exhumed. The age and magnitude of the crustal uplift and erosion occurring during exhumation has not been addressed to date. Therefore, this study reports the crystallization and cooling ages of two plutons, the Tesorera Granodiorite and the Comanja Granite, and estimates their emplacement depths. Based on these data, the exhumation age of the Tesorera Granodiorite is estimated to be between ~73 Ma and ~63 Ma at an exhumation rate of ~528 m/m. y. and that of the Comanja Granite is 52 Ma and 48 Ma at an exhumation rate of ~2500 m/m. y. Exhumation-erosion event of the Tesorera Granodiorite was located on the trace of the San Luis-Tepehuanes Fault System and that of the Comanja Granite on the a trace of the El Bajío Fault System. Furthermore, the high exhumation rate in the Comanja Granite suggests that gravitational collapse played an important role during exhumation.  相似文献   
4.
5.
Rotation of faults or pre-existing weakness planes produce two effects on the slickenlines of fault planes. First, the rotation leads to changes in the pitch of slickenlines. As a result, the aspect of the pre-existing fault may change. For example, after rotation, a normal fault may show features of an oblique fault, a strike-slip fault, or a thrust fault. Second, due to rotation, stress states on the fault planes are different from those before the rotation. As a consequence some previous planes may be reactivated. For an isolated plane, the reactivation due to rotation can produce new sets of slickenlines. With block rotation, superimposed slickenlines can be generated in the same tectonic phase. Thus, it is not appropriate to use fault-slip data from slickenlines to analyze the stress tensor in a region where there is evidence of block rotation. As an example, we present the data of slickenlines from core samples in the Tunich area of the Gulf of Mexico. The results wrongly indicate that the calculated stress tensor deviates from the far-field stress tensor.  相似文献   
6.
It is shown that in two-dimensional and three-dimensional deformation accommodated by fracture, the symmetry of the fault patterns is an intrinsic attribute because it reflects the symmetry of either stress or strain tensors. The deformation accommodated by sliding along pre-existing planes, when there is kinematic interaction between that planes, forms multiple fault pattern and multiple slickenline sets during a single deformation event. These fault patterns have no restrictions with respect to symmetry, number of fault sets or fault orientation.

The kinematic analysis developed here shows that an interacting system is formed by two cross cutting faults and three slickenlines. One slickenline must be parallel to the intersection line between the planes. Also, it is demonstrated that the slickenlines generally do not correspond to the shear stress solution on the planes. Thus, the interaction between planes does not satisfy the assumption of parallelism between shear stress and slip vector. We conclude that the inversion methods to calculate paleostress tensors can lead to erroneous interpretations in structurally complex zones with many pre-existing planes of weakness.

We propose four possibilities to form multiple fault patterns: (1) two or more events of faulting obeying Coulomb's law with a change of orientation of the principal stresses in each event; (2) reactivation of non-interacting planes according to the Bott (1959) model; (3) one three-dimensional strain event that obeys the “Slip Model”; this mechanism will form an orthorhombic four-fault pattern and two slickenline sets in a single strain event; and (4) one or more events obeying the interacting block model proposed here, with or without rotation of the principal stresses. We propose the last origin as the most common in continental regions.  相似文献   

7.
本文介绍了断裂引起的应变量计算方法。断裂作用可导致连续应变和非连续应变。连续应变与断裂位移,断裂长度比值及断裂面上有效应力成正相关关系。影响非连续应变的因素有:断裂几何形态、断裂的旋转性、断裂规模。已经提出三种断裂旋转机制:刚性旋转,垂直剪切和斜向剪切。对于这三种机制,我们分别建立了断裂非连续应变的计算公式。这些公式与断裂的旋转角度和位移大小相关。刚性旋转时,断块内部没有任何塑性变形,因此地层的长度没有变化。它引起的非连续应变最小。垂直剪切作用使断块内地层变形,但水平方向的地层长度不变。推算的公式表明,对于相同的原始数据,它引起的非连续应变比刚性旋转机制引起的非连续应变大。斜向剪切也使断块内地层变形,但水平方向的长度也不变。在同等条件下,它引起的非连续应变比垂直剪切机制引起的非连续应变大。  相似文献   
8.
Fault linkage plays an important role in the growth of faults. In this paper we analyze a published synthetic model to simulate fault linkage. The results of the simulation indicate that fault linkage is the cause of the shallower local slopes on the length–frequency plots. The shallower local slopes lead to two effects. First, the curves of log cumulative number against log length exhibit fluctuating shapes as reported in literature. Second, for a given fault population, the power-law exponents after linkage are negatively related to the linked length scales. Also, we present datasets of fault length measured from four structural maps at the Cantarell oilfield in the southern Gulf of Mexico (offshore Campeche). The results demonstrate that the fault length data, corrected by seismic resolution at the tip fault zone, also exhibit fluctuating curves of log cumulative frequency vs. log length. The steps (shallower slopes) on the curves imply the scale positions of fault linkage. We conclude that fault linkage is the main reason for the fluctuating shapes of log cumulative frequency vs. log length. On the other hand, our data show that the two-tip faults are better for linear analysis between maximum displacement (D) and length (L). Evidently, two-tip faults underwent fewer fault linkages and interactions.  相似文献   
9.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号