首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
地球物理   1篇
地质学   11篇
  2018年   1篇
  2016年   1篇
  2014年   1篇
  2013年   1篇
  2011年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2004年   1篇
  2000年   1篇
  1999年   2篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
2.
 A field survey and modelling of the oxidation and carbonate buffering reactions inside the alum-shale-containing waste rock dumps located in Maardu, Estonia, was accomplished. In the slope areas, the shale has been altered at high temperatures due to the spontaneous combustion and the pyritic acidity has been eliminated through migration of SOx gases out from the dump. In the central parts of the waste rock plateaus, low temperature pyrite oxidation fronts develop towards the dump depth and towards the centres of individual shale lumps. The main secondary phases precipitating in the weathering profile are gypsum, ferric oxyhydroxide, K-jarosite and smectite. The respective field data made it possible to calibrate the two-stage oxygen diffusion model and the characteristic pyrite oxidation rate 0.06–0.08 mol of pyrite reacted per kg of available water (pyrox/H2O value) was estimated to describe the first tens of years of dump performance. The model is capable to compare different shale disposal strategies that are illustrated with two case scenarios. The buffering of sulphuric acid by Mg-calcite appears to be an incongruent reaction with gypsum precipitating that leads to the build-up of the high Mg/Ca ratio in the leachate. Application of the Mg/Ca method estimates the pyrox/H2O value in the range of 0.05–0.14 mol/kg. Received: 26 January 1999 · Accepted: 23. February 1999  相似文献   
3.
 The assessment of the aluminosilicate buffering potential during acid weathering of the Estonian alum shale is provided. It is found that the stoichiometric interaction between dissolved pyrite oxidation products and illite of the shale best describe the buffering process and are consistent with earlier field studies. The scheme includes incongruent dissolution of illite with smectite and K-jarosite precipitating. This complex mechanism involves buffering of 8% of the acidity by K+ and temporary precipitation of 25% of the acidity as K-jarosite. Dissolution proceeds at a low pH (1.5–3) until all pyrite in the shale particle is oxidised. Hence, if the total amount of illite present is larger than needed for stoichiometric interactions, only part of it is involved in a buffering process, neutralising a certain percentage of acidity. The next stage in shale weathering is the incongruent dissolution of K-jarosite with the release of the precipitated acidity and the formation of ferric oxyhydroxide. Received: 3 August 1998 · Revised paper: 26 January 1999 · Accepted: 23 February 1999  相似文献   
4.
Radon, radium and helium data from three sites in granitic rock in Sweden (Forsmark and Laxemar) and Finland (Olkiluoto) from depths greater than 1,000 m were interpreted by a model that describes how daughter nuclides, including helium from uranium and thorium decay, escape from minerals, enter the pore water in the rock matrix and diffuse to the seeping water in the fractures in the rock. The radium concentrations are on the order of <30 Bq/l of water that has recently infiltrated and then emerged from the rock. Radon concentrations are mostly several orders of magnitude larger. The model predicts values in the same range. The fair agreement between model results, field data and laboratory data over a scale spanning micrometres over meters to kilometres, and time scales of days to millions of years, shows that the micropores of the rock matrix are connected even at depths down to and beyond a kilometre. Molecular diffusion in the matrix pore water is a key migration mechanism. Laboratory-derived sorption coefficients for radium are of the same magnitude as those needed in the modelling of the in situ data to give good agreement.  相似文献   
5.
This paper describes current knowledge about the nature of and potential for thermo–hydro–mechanical–chemical modelling of the excavation damaged zone (EDZ) around the excavations for an underground radioactive waste repository. In the first part of the paper, the disturbances associated with excavation are explained, together with reviews of Workshops that have been held on the subject. In the second part of the paper, the results of a DECOVALEX [DEmonstration of COupled models and their VALidation against EXperiment: research funded by an international consortium of radioactive waste regulators and implementers (http://www.decovalex.com)] research programme on modelling the EDZ are presented. Four research teams used four different models to simulate the complete stress–strain curve for Avro granite from the Swedish Äspö Hard Rock Laboratory. Subsequent research extended the work to computer simulation of the evolution of the repository using a ‘wall-block model’ and a ‘near-field model’. This included assessing the evolution of stress, failure and permeability and time-dependent effects during repository evolution. As discussed, all the computer models are well suited to sensitivity studies for evaluating the influence of their respective supporting parameters on the complete stress–strain curve for rock and for modelling the EDZ.  相似文献   
6.
7.
The solutions of advection–dispersion equation in single fractures were carefully reviewed, and their relationships were addressed. The classic solution, which represents the resident or flux concentration within the semi‐infinite fractures under constant concentration or flux boundary conditions, respectively, describes the effluent concentration for a finite fracture. In addition, it also predicts the cumulative distribution of solute particle residence time passing through a single fracture under pulse injection condition, based on which a particle tracking approach was developed to simulate the local advection–dispersion in single fractures. We applied the proposed method to investigate the influence of local dispersion in single fractures on the macrodispersion in different fracture systems with relatively high fracture density. The results show that the effects of local dispersion on macrodispersion are dependent on the heterogeneity of fracture system, but generally the local dispersion plays limited roles on marodispersion at least in dense fracture network. This trend was in agreement with the macrodispersion in heterogeneous porous media. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
8.
Numerical modeling of stress effects on solute transport in fractured rocks   总被引:1,自引:0,他引:1  
The effects of stress/deformation on fluid flow and contaminant transport in fractured rocks is one of the major concerns for performance and safety assessments of many subsurface engineering problems, especially radioactive waste disposal and oil/gas reservoir fields. However, very little progress has been made to study this issue due to difficulties in both experiments and numerical modeling. The objective of this study is to systematically investigate the influence of stress on solute transport in fractured rocks for the first time, considering different stress and hydraulic pressure conditions. A hybrid approach combining discrete element method (DEM) for stress-flow simulations and a particle tracking algorithm is developed. The impact of matrix diffusion (diffusion of molecular size solutes in and out of the rock matrix, and sorption onto the surface of micropores in rock matrix) is also included. The numerical results show that stress not only significantly changes the solute residence time through the fracture networks, but also changes the solute travel paths. Matrix diffusion plays a dominant role in solute transport when the hydraulic gradient is small, which is often encountered in practice.  相似文献   
9.
10.
Syrovetnik  K.  Puura  E.  Neretnieks  I. 《Environmental Geology》2004,45(5):731-740
Oxidation of sulphides leads to the dissolution of metals, which are transported with water and accumulate at geochemical barriers. Such barriers can form in peat bogs. This paper gives an introduction into the long-term processes in Oostriku peat bog where high accumulations of heavy metals are observed. Peat and water samples are analysed for Fe, As and heavy metals (Cd, Cu, Mn, Ni, Pb and Zn) using different methods. A concept is based on the observations. Metals are leached by sulphide oxidation in the carbonate rocks upstream of the peat. The water feeds the peat from below. The metals are sorbed and precipitated in the peat. The sulphide oxidation is simulated to examine the origin and metal speciation in the water. The simulated solution is compared with the groundwater entering the peat. The results showed a fair agreement for the major constituents. There were considerable differences for species with low concentrations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号