首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46篇
  免费   2篇
  国内免费   1篇
测绘学   4篇
大气科学   2篇
地球物理   18篇
地质学   18篇
海洋学   2篇
自然地理   5篇
  2021年   2篇
  2020年   2篇
  2019年   1篇
  2018年   4篇
  2017年   5篇
  2016年   4篇
  2015年   1篇
  2014年   3篇
  2013年   6篇
  2012年   3篇
  2011年   3篇
  2010年   2篇
  2009年   1篇
  2007年   1篇
  2006年   3篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  1993年   1篇
  1990年   1篇
  1984年   1篇
排序方式: 共有49条查询结果,搜索用时 31 毫秒
1.
Geotechnical and Geological Engineering - Soil nailing is an in-situ soil reinforcement technique that is used to enhance the stability of land slopes, retaining walls and excavations. This...  相似文献   
2.
Manual extraction of road network by human operator is an expensive and time-consuming procedure. Alternatively, automation of the extraction process would be a great advancement. For this purpose, an automatic method is proposed to extract roads from high resolution satellite images. In this study, using few samples from road surface, a particle swarm optimization is applied to a fuzzy-based mean calculation system to obtain road mean values in each band of high resolution satellite colour images. Then, the images are segmented using the calculated mean values from the fuzzy system. Optimizing the fuzzy cost function by particle swarm optimization enables the fuzzy approach to be the best mean value of road with sub-grey level precision. Initially, this method was applied to simulated images where the calculated mean values are consistent with the hypothetic mean values. Application of the method to IKONOS satellite images has shown a prospective outcome for automatic road extraction. Mathematical morphology is subsequently used to extract an initial main road centreline from the segmented image. Then, small redundant segments are automatically removed. The quality of the extracted road centreline indicates the effectiveness of the proposed approach.  相似文献   
3.
The impact of diurnal variations of the heat fluxes from building and ground surfaces on the fluid flow and air temperature distribution in street canyons is numerically investigated using the PArallelized Large-eddy Simulation Model (PALM). Simulations are performed for a 3 by 5 array of buildings with canyon aspect ratio of one for two clear summer days that differ in atmospheric instability. A detailed building energy model with a three-dimensional raster-type geometry—Temperature of Urban Facets Indoor-Outdoor Building Energy Simulator (TUF-IOBES)—provides urban surface heat fluxes as thermal boundary conditions for PALM. In vertical cross-sections at the centre of the spanwise canyon the mechanical forcing and the horizontal streamwise thermal forcing at roof level outweigh the thermal forces from the heated surfaces inside the canyon in defining the general flow pattern throughout the day. This results in a dominant canyon vortex with a persistent speed, centered at a constant height. Compared to neutral simulations, non-uniform heating of the urban canyon surfaces significantly modifies the pressure field and turbulence statistics in street canyons. Strong horizontal pressure gradients were detected in streamwise and spanwise canyons throughout the day, and which motivate larger turbulent velocity fluctuations in the horizontal directions rather than in the vertical direction. Canyon-averaged turbulent kinetic energy in all non-neutral simulations exhibits a diurnal cycle following the insolation on the ground in both spanwise and streamwise canyons, and it is larger when the canopy bottom surface is paved with darker materials and the ground surface temperature is higher as a result. Compared to uniformly distributed thermal forcing on urban surfaces, the present analysis shows that realistic non-uniform thermal forcing can result in complex local airflow patterns, as evident, for example, from the location of the vortices in horizontal planes in the spanwise canyon. This study shows the importance of three-dimensional simulations with detailed thermal boundary conditions to explore the heat and mass transport in an urban area.  相似文献   
4.
This study aims to provide knowledge on the thermo-mechanical behaviour of heat exchanger piles, through a laboratory scale model. The model pile (20 mm in external diameter) was embedded in dry sand. The behaviour of the axially loaded pile under thermal cycles was investigated. After applying the axial load on the pile head, the pile temperature was varied between 5 and 30 °C. Seven tests, corresponding to various axial loads ranging from 0 to 70 % of the pile estimated bearing capacity, were performed. The results on pile head displacement show that heating under low axial load induced heave and cooling induced settlement; the pile temperature-displacement curve was found to be reversible and compatible with the thermal expansion curve of the pile. However, at higher axial loads, irreversible settlement of the pile head was observed after a few thermal cycles. The axial load profile measured by the strain gauges evidenced that the pile head load was mainly transferred to the pile toe. Nevertheless, thermal cycles modified significantly the mobilised skin friction along the pile. The total pressure measured at various locations in the soil mass was also slightly influenced by the thermal cycles.  相似文献   
5.
This study investigates how extreme flows in the Grote Nete watershed located in the Flanders region of Belgium will respond to climate change and urban growth using the hydrological model WetSpa. Three climate change scenarios (low, mean and high), three urban development scenarios (low, medium and high) and the nine combined climate–urban change scenarios are considered. The results indicate that extreme low flows would decrease noticeably by climate change, while they would be less sensitive to urban development. On the other hand, extreme peak flows are predicted to increase considerably due to both climate change and urban growth. It is concluded that coupling the effects of land use change with climate change may lead to severe increase in the frequency river floods in winter as well as the frequency of extreme river low flows in summer.  相似文献   
6.
The ever‐increasing population in cities intensifies environmental pollution that increases the number of asthmatic patients. Other factors that may influence the prevalence of asthma are atmospheric parameters, physiographic elements and personal characteristics. These parameters can be incorporated into a model to monitor and predict the health conditions of asthmatic patients in various contexts. Such a model is the base for any asthma early warning system. This article introduces a novel ubiquitous health system to monitor asthmatic patients. Ubiquitous systems can be effective in monitoring asthmatic patients through the use of intelligent frameworks. They can provide powerful reasoning and prediction engines for analyzing various situations. Our proposed model encapsulates several tools for preprocessing, reasoning and prediction of asthma conditions. In the preprocessing phase, outliers in the atmospheric datasets were detected and missing sensor data were estimated using a Kalman filter, while in the reasoning phase, the required information was inferred from the raw data using some rule‐based inference techniques. The asthmatic conditions of patients were predicted accurately by a Graph‐Based Support Vector Machine in a Context Space (GBSVMCS) which functions anywhere, anytime and with any status. GBSVMCS is an improved version of the common Support Vector Machine algorithm with the addition of unlabeled data and graph‐based rules in a context space. Based on the stored value for a patient's condition and his/her location/time, asthmatic patients can be monitored and appropriate alerts will be given. Our proposed model was assessed in Region 3 of Tehran, Iran for monitoring three different types of asthma: allergic, occupational and seasonal asthma. The input data to our system included air pollution data, the patients’ personal information, patients’ locations, weather data and geographical information for 270 different situations. Our results showed that 90% of the system's predictions were correct. The proposed model also improved the estimation accuracy by 15% in comparison to conventional methods.  相似文献   
7.
We present a simple modelling method to estimate the volume of available groundwater in the freshwater lens of atoll islands under steady-state conditions. Model inputs include annual rainfall depth, island width for cross-sections along the length of the island, aquifer hydraulic conductivity, and depth to the contact between the upper sand aquifer and the lower limestone aquifer. The methodology is tested for nine islands of varying size in the Maldives and Micronesia. Sensitivity analysis indicates that lens volume on large islands typically is governed by the depth to the discontinuity, whereas lens volume for smaller islands is governed by rainfall rate and hydraulic conductivity. Volume curves, which relate lens volume to lens thickness, are developed for each of the nine islands and for three generic island shapes to allow rapid estimation of lens volume given field-estimated lens thickness. The methods presented in this study can be used for any small atoll island.  相似文献   
8.
Temporal changes of meteorological variables can affect reference evapotranspiration (ET0). The goal of the present research is to analyze the changes of ET0 and identify the impact of effective meteorological parameters to the changes of ET0. For this purpose, daily meteorological data recorded in 30 synoptic stations of Iran during 1960–2014 were used. The annual and seasonal values of ET0 were calculated by the recorded data. To calculate ET0, FAO56 Penman–Monteith method (standard method) was used. The annual and seasonal trends of ET0 and its eight effective parameters were analyzed. Then the contributions of effective parameters changes on ET0 were determined. To analyze ET0 trend at annual and seasonal scales, two common methods, Spearman’s Rho and Mann–Kendall tests, were used. The R 2 = 0.99 showed that the results of the mentioned methods were similar and on the basis of T-statistic <0.057, their difference was not significant (95% confidence level). Therefore, only one method’s results (Spearman’s Rho) were reported. On the basis of Spearman’s Rho results, the annual and seasonal values of ET0 had negative trend in most of arid and semi-arid stations while the trend of this parameter was positive in humid and very humid stations. At annual and seasonal scales, decreasing in wind speed (W), temperature (T), sunshine hours (n), minimum temperature (TN), dew point temperature (TD), maximum temperature (TX), saturation vapor pressure deficit (SVPD) and solar radiation (RS) was observed in 58, 54, 39, 43, 56, 65, 65 and 37% studied stations, respectively. In many scales, the results showed that TX and W were the most effective meteorological variables on ET0 changes and then SVPD was located in second step in arid and semi-arid stations. In humid and very humid stations, W was the first effective parameter at all scales, except autumn.  相似文献   
9.
Geoelectrical and induced polarization data from measurements along three profiles and from one 3D survey are acquired and processed in the central Skellefte District, northern Sweden. The data were collected during two field campaigns in 2009 and 2010 in order to delineate the structures related to volcanogenic massive sulphide deposits and to model lithological contacts down to a maximum depth of 1.5 km. The 2009 data were inverted previously, and their joint interpretation with potential field data indicated several anomalous zones. The 2010 data not only provide additional information from greater depths compared with the 2009 data but also cover a larger surface area. Several high‐chargeability low‐resistivity zones, interpreted as possible massive sulphide mineralization and associated hydrothermal alteration, are revealed. The 3D survey data provide a detailed high‐resolution image of the top ~450 m of the upper crust around the Maurliden East, North, and Central deposits. Several anomalies are interpreted as new potential prospects in the Maurliden area, which are mainly concentrated in the central conductive zone. In addition, the contact relationship between the major geological units, e.g., the contact between the Skellefte Group and the Jörn Intrusive Complex, is better understood with the help of 2010 deep‐resistivity/chargeability data. The bottommost part of the Vargfors basin is imaged using the 2010 geoelectrical and induced polarization data down to ~1‐km depth.  相似文献   
10.
The Cercis siliquastrum tree leaves are introduced as a low cost biosorbent for removal of Ag(I) from aqueous solution in a batch system. FT‐IR, XRD analysis, and potentiometric titration illustrate that the adsorption took place and the acidic functional group (carboxyl) of the sorbent was involved in the biosorption process. In addition, it was observed that the pH beyond pHpzc 4.4 is favorable for the removal procedure. The effect of operating variables such as initial pH, temperature, initial metal ion concentration, and sorbent mass on the Ag(I) biosorption was analyzed using response surface methodology (RSM). The proposed quadratic model resulting from the central composite design approach (CCD) fitted very well to the experimental data. The optimum condition obtained with RSM was an initial concentration of Ag(I) of 85 mg L?1, pH = 6.3 and sorbent mass 0.19 g. The applicability of different kinetic and isotherm models for current biosorption process was evaluated. The isotherm, kinetic, and thermodynamic studies showed the details of sorbate‐sorbent behavior. The competitive effect of alkaline and alkaline earth metal ions during the loading of Ag(I) was also considered.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号