首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
地质学   2篇
  2018年   2篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.

The Letšeng Diamond Mine comprises two ~91 Ma kimberlite pipes. An update of the geology is presented based on the 2012–2017 detailed investigation of open pit exposures and all available drillcores which included mapping, logging and petrography. Each of the steep-sided volcanic pipes comprises a number of phases of kimberlite with contrasting diamond contents which were formed by the emplacement of at least four batches of mantle-derived magma. The resulting range of textures includes resedimented volcaniclastic kimberlite (RVK), Kimberley-type pyroclastic kimberlite (KPK), coherent kimberlite (CK) and minor amounts of hypabyssal kimberlite (HK). The pipes are compared with KPK occurrences from southern Africa and worldwide. Many features of the Letšeng pipes are similar to KPK infilled pipes particularly those of the widespread Cretaceous kimberlite province of southern Africa. The differences displayed at Letšeng compared to other large KPK pipe infills described from around the world are attributed to the marginal or melnoitic nature of the magma and the upper diatreme to crater setting of the Letšeng pipes, where processes become extrusive. It is concluded that the pipes comprise a variant of Kimberley-type pyroclastic kimberlite emplacement. The classification of many of the Letšeng rocks as KPK is important for developing the internal geology of the pipes as well as for predicting the distribution of diamonds within the bodies.

  相似文献   
2.
The Let?eng-la-Terae kimberlite (Lesotho), famous for its large high-value diamonds, has five distinct phases that are mined in a Main and a Satellite pipe. These diatreme phases are heavily altered but parts of a directly adjacent kimberlite blow are exceptionally fresh. The blow groundmass consists of preserved primary olivine with Fo86?88, chromite, magnesio-ulvöspinel and magnetite, perovskite, monticellite, occasional Sr-rich carbonate, phlogopite, apatite, calcite and serpentine. The bulk composition of the groundmass, extracted by micro-drilling, yields 24–26 wt% SiO2, 20–21 wt% MgO, 16–19 wt% CaO and 1.9–2.1 wt% K2O, the latter being retained in phlogopite. Without a proper mineral host, groundmass Na2O is only 0.09–0.16 wt%. However, Na-rich K-richterite observed in orthopyroxene coronae allows to reconstruct a parent melt Na2O content of 3.5–5 wt%, an amount similar to that of highly undersaturated primitive ocean island basanites. The groundmass contains 10–12 wt% CO2, H2O is estimated to 4–5 wt%, but volatiles and alkalis were considerably reduced by degassing. Mg# of 77.9 and 530 ppm Ni are in equilibrium with olivine phenocrysts, characterize the parent melt and are not due to olivine fractionation. 87Sr/86Sr(i)?=?0.703602–0.703656, 143Nd/144Nd(i)?=?0.512660 and 176Hf/177Hf(i)?=?0.282677–0.282679 indicate that the Let?eng kimberlite originates from the convective upper mantle. U–Pb dating of groundmass perovskite reveals an emplacement age of 85.5?±?0.3 (2σ) Ma, which is significantly younger than previously proposed for the Let?eng kimberlite.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号