首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   120篇
  免费   6篇
测绘学   4篇
大气科学   4篇
地球物理   41篇
地质学   60篇
海洋学   6篇
天文学   3篇
综合类   2篇
自然地理   6篇
  2022年   5篇
  2021年   5篇
  2020年   4篇
  2019年   3篇
  2018年   7篇
  2017年   9篇
  2016年   14篇
  2015年   8篇
  2014年   9篇
  2013年   15篇
  2012年   5篇
  2011年   7篇
  2010年   1篇
  2009年   6篇
  2008年   10篇
  2007年   4篇
  2006年   1篇
  2005年   3篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  2001年   2篇
  1998年   1篇
  1995年   1篇
  1994年   1篇
  1977年   1篇
排序方式: 共有126条查询结果,搜索用时 15 毫秒
1.
Hierarchical cluster analysis (HCA) and inverse modeling (PH REdox EQuilibrium (in C language) (PHREEQC)) were simultaneously useful approaches in interpreting surface water hydrochemistry within Talkhab River in the Tang-Bijar oilfield, Iran, where large uncertainties exist in the understanding of the water quality system. Q-mode HCA applied to the data revealed three major surface water associations distinguished on the basis of the major causes of variation in the hydrochemistry. The three water groups were classified as upstream waters (group 1: Ca–SO4), intermediate waters (group 2: Ca–SO4–Cl), and downstream waters (group 3: Na–Cl). Geochemical reaction models were constructed using PHREEQC to establish the reactions associated with the different mineral phases through inverse modeling. The hydrochemical compositions of the water groups and the mass balance calculations indicate that the dominant processes and reactions responsible for the hydrochemical evolution in the system are (1) dissolution of evaporites, (2) precipitation of carbonate minerals, (3) silicate weathering reactions, (4) limited mixing with saline water, and (5) ion exchange.  相似文献   
2.
A two dimensional implicit finite volume scheme for solving the shallow-water equations is developed. The effects of the Coriolis force, surface wind stress, and waves are included. A non-uniform rectilinear forward staggered grid is used with Cartesian coordinates. The time integration is performed using the Euler implicit technique. The convective flux is treated using the deferred correction method. The viscous terms are discretized using a second order central difference approximation. The SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) algorithm is used for coupling the velocity components and the water elevation gradient for the water level correction. The system of equations is solved sequentially using the Strongly Implicit Procedure (SIP). To simulate wave driven current, a phase averaged wave model is used first to simulate wave transformation and calculate radiation stresses. The performance of the developed model is validated for different sources of external forces and different combinations of boundary conditions. The validation cases include tidal circulation in a harbor and wave induced currents behind a breakwater parallel to the coastline. The model is finally applied to simulate the flow pattern in a closed artificial lagoon and along the coastline near Damietta Port located along the Northern coast of Egypt. Results of the developed model agree well with the published results for the considered cases.  相似文献   
3.
The extraction of road networks from digital imagery is a fundamental image analysis operation. Common problems encountered in automated road extraction include high sensitivity to typical scene clutter in high-resolution imagery, and inefficiency to meaningfully exploit multispectral imagery (MSI). With a ground sample distance (GSD) of less than 2 m per pixel, roads can be broadly described as elongated regions. We propose an approach of elongated region-based analysis for 2D road extraction from high-resolution imagery, which is suitable for MSI, and is insensitive to conventional edge definition. A self-organising road map (SORM) algorithm is presented, inspired from a specialised variation of Kohonen's self-organising map (SOM) neural network algorithm. A spectrally classified high-resolution image is assumed to be the input for our analysis. Our approach proceeds by performing spatial cluster analysis as a mid-level processing technique. This allows us to improve tolerance to road clutter in high-resolution images, and to minimise the effect on road extraction of common classification errors. This approach is designed in consideration of the emerging trend towards high-resolution multispectral sensors. Preliminary results demonstrate robust road extraction ability due to the non-local approach, when presented with noisy input.  相似文献   
4.
In the context of geological carbon sequestration (GCS), carbon dioxide (CO2) is often injected into deep formations saturated with a brine that may contain dissolved light hydrocarbons, such as methane (CH4). In this multicomponent multiphase displacement process, CO2 competes with CH4 in terms of dissolution, and CH4 tends to exsolve from the aqueous into a gaseous phase. Because CH4 has a lower viscosity than injected CO2, CH4 is swept up into a ‘bank’ of CH4‐rich gas ahead of the CO2 displacement front. On the one hand, this may provide a useful tracer signal of an approaching CO2 front. On the other hand, the emergence of gaseous CH4 is undesirable because it poses a leakage risk of a far more potent greenhouse gas than CO2 if the cap rock is compromised. Open fractures or faults and wells could result in CH4 contamination of overlying groundwater aquifers as well as surface emissions. We investigate this process through detailed numerical simulations for a large‐scale GCS pilot project (near Cranfield, Mississippi) for which a rich set of field data is available. An accurate cubic‐plus‐association equation‐of‐state is used to describe the non‐linear phase behavior of multiphase brine‐CH4‐CO2 mixtures, and breakthrough curves in two observation wells are used to constrain transport processes. Both field data and simulations indeed show the development of an extensive plume of CH4‐rich (up to 90 mol%) gas as a consequence of CO2 injection, with important implications for the risk assessment of future GCS projects.  相似文献   
5.
Seismic reflection profiles from the Ifni/Tan-Tan Atlantic margin of southern Morocco, interpreted in the light of well data and field geology from the Western Anti-Atlas, allowed us to establish the seismostratigraphic framework of the syn-rift series and to reveal (i) a compressional structural style in the pre-Triassic basement similar to that established in the adjacent outcropping onshore basement but with an opposed western vergence, (ii) the importance of inherited anterior structures in the formation of Triassic-Liassic rift structures and (iii) an east–west propagation of these rift structures. To cite this article: N. AbouAli et al., C. R. Geoscience 337 (2005).  相似文献   
6.
The bank infiltration (BI) technique may be a viable option if the local climate, hydrological, and geological conditions are conducive. This study was specifically conducted to explore the possibility of using BI to source the polluted surface water in conjunction with groundwater. Three major factors were considered for evaluation: (1) investigation on the contribution of surface water through BI, (2) input of local groundwater, and (3) water quality characteristics of water supply. Initially, the geophysical method was employed to define the subsurface geology and hydrogeology, and isotope techniques were performed to identify the source of groundwater recharge and interaction between surface water and groundwater. The physicochemical and microbiological parameters of the local surface water bodies and groundwater were analyzed before and during water abstraction. Extracted water revealed a 5 %–98 % decrease in turbidity, as well as HCO3 +, SO4 ?, NO3 ?, Al, As, and Ca concentration reduction compared with those of Langat river water. However, water samples from test wells during pumping show high concentrations of Fe2+ and Mn2+. In addition, amounts of Escherichia coli, total coliform, and Giardia were significantly reduced (99.9 %). Pumping test results indicate that the two wells (DW1 and DW2) were able to sustain yields.  相似文献   
7.
This article reports on a series of small-scale, plane strain, 1 g physical model tests designed to investigate the bearing capacity and failure mechanics of end-bearing soil-cement columns formed via Deep Mixing (DM). Pre-formed soil-cement columns, 24 mm in diameter and 200 mm in length, were installed in a soft clay bed using a replacement method; the columns represented improvement area ratios, ap, of 17%, 26%, and 35% beneath a rigid foundation of width 100 mm. Particle Image Velocimetry (PIV) was implemented in conjunction with close-range photogrammetry in order to track soil displacement during loading, from which the failure mechanisms were derived. Bearing capacity performance was verified using Ultimate Limit State numerical analysis, with the results comparing favorably to the analytical static and kinematic solutions proposed by previous researchers. A new equation for bearing capacity was derived from this numerical analysis based on the improvement area ratio and cohesion ratio of the soil column and ground model.  相似文献   
8.
9.
We examine the low flow records for six urbanized watersheds in the Maryland Piedmont region and develop regression equations to predict annual minimum low flow events. The effects of both future climate (based on precipitation and temperature projections from two climate models: Hadley and the Canadian Climate Centre (CCC)) and land use change are incorporated to illustrate possible future trends in low flows. A regression modelling approach is pursued to predict the minimum annual 7‐day low flow estimates for the proposed future scenarios. A regional regression model was calibrated with between 10 and 50 years of daily precipitation, daily average temperature, annual imperviousness, and the daily observed flow time‐series across six watersheds. Future simulations based on a 55 km2 urbanizing watershed just north of Washington, DC, were performed. When land use and climate change were employed singly, the former predicted no trends in low flows and the latter predicted significant increasing trends under Hadley and no trends under CCC. When employed jointly, however, low flows were predicted to decrease significantly under CCC, whereas Hadley predicted no significant trends in low flows. Antecedent precipitation was the most influential predictor on low flows, followed by urbanization. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
10.

In this work, we measure the performance of the fixed stress split algorithm for the immiscible water-oil flow coupled with linear poromechanics. The two-phase flow equations are solved on general hexahedral elements using the multipoint flux mixed finite element method whereas the poromechanics equations are discretized using the conforming Galerkin method. We introduce a rigorous calculation of the update in poroelastic properties during the iterative solution of the coupled system equations. The effects of the coupling parameter on the performance of the fixed stress algorithm is demonstrated in two field studies: the Frio oil reservoir and the Cranfield injection site.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号