首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
地质学   6篇
  2010年   1篇
  2009年   3篇
  2004年   1篇
  1991年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
The heat capacity of åkermanite solid solutions was measured by a small scale adiabatic calorimeter near the incommensurate-normal (I-N) transition. The heat capacity anomalies caused by the I-N transition show the type characteristic behavior implying the presence of dynamical fluctuations. The heat capacity anomalies were observed over the whole range of the åkermanite solid solutions Ca2Mg1-xCoxSi2O7 and Ca2Mg1-x-ZnxSi2O2. With increase of Co or Zn atoms, the transition temperature, Ti, rises linearly from ca. 83° C to 220° C and to 130° C, respectively. In the system Ca2CoSi2O7-Ca2FeSi2O7 and Ca2MgSi2O7-Ca2-FeSi2O7 electronic microscopy revealed that the temperature of the heat capacity anomaly decreases with increasing Fe content, whereas the Ti rises. This unusual behavior is ascribed to the microdomains observed in high resolution lattice images.  相似文献   
2.
3.
The Lake Chany complex and nearby lakes in western Siberia (Russian Federation) were studied to constrain the S cycle in these terrestrial lake environments. Surface water chemistry was characterized by Na–SO4–Cl composition, comparable to other inland basins in semi-arid climatic zones associated with marine evaporite-bearing formations at depth. Dissolved sulfates showed elevated δ34S (up to +32.3‰). These values are quite distinct from those in similar saline lakes in northern Kazakhstan, the Aral Sea, Lake Barhashi, and a gypsum deposit in the Altai Mountains. The localized distribution of such a unique S isotopic signature in dissolved SO4 negates both aeolian and catastrophic flooding hypotheses previously suggested for the genesis of the dissolved salts. The probable source of the dissolved SO4 in Lake Chany basin is inherited from hidden saline groundwaters (whose location and origins remain unclear) from eastern Paleozoic ranges with Upper Devonian formations with heavy S isotope values. Post-depositional enrichment of heavy S in the dissolved SO4 from saline sediments may be caused by local activity of SO4-reducing bacteria under the ambient supply of electron donors (dissolved river load organic matter and decaying bacterial mats) in the lake complex. Such microbial processes can remove up to ca. 60% of SO4 from the system. Extensive and intensive evaporation of lake fluids, ca. 40%, was indicated by the progressive enrichment of δ18O values in meteoric water samples collected along the river and lake system. This evaporation process compensates the microbial loss of SO4 dissolved in the incoming river water.  相似文献   
4.
Temporal variations in the concentration and N isotopic ratios of inorganic N (NH4– and NO3–N) as affected by the soil temperature regime together with the input of bird excreta were analyzed in a sedentary soil under a dense colony (1.6 nests/m2) of breeding Black-tailed Gulls (Laruscrassirostris: a ground-nesting seabird). Surface soil samples were taken monthly from mid-March to late July 2005 from Kabushima Island, Hachinohe, northeastern Japan. The spatial concentration of inorganic N in the soils varied considerably on all sampling dates. There may be a statistically significant trend, showing increased NH4–N content from settlement up to early June when the input of fecal N attains its maximum, and then decreases towards the end of breeding activity (early August). Abundant NO3–N was observed in all soils, particularly in the later stage of breeding (up to 3800 mg-N/kg dry soil), refuting earlier claims that nitrification is unimportant in the soils. δ15N values of NH4 in the soils showed unusually high values up to +51‰, reflecting N isotope fractionation due to volatilization of NH3 during the mineralization. Mean δ15N values of the monthly collected totals of NH4 and NO3 were not significantly different at the 5% level based on ANOVA and significant differences were observed only among the three means of NO3–N collected in mid-March (settlement of colony: δ15N = −0.2 ± 3.5‰) and late July (later stages of breeding: δ15N = +22.1 ± 7.0‰, +23.3 ± 7.8‰) at the 1% and 5% levels by t-test, respectively. Such an observation of significantly increased δ15N values for NO3–N in soils from the fledgling stage indicates the integration of denitrification coupled with nitrification under a limited supply of fecal N.  相似文献   
5.
Synthesis experiments in the system MgAl2O4–MgFe2O4 [MgAl2–xFexO4 (0 x 2)] were carried out using a PbF2 flux. The crystalline products synthesized in the compositional range of 0.6 <x 1.2 consisted of two spinel phases, whereas those synthesized in the compositional ranges of 0.0 x 0.6 and 1.2 < x 2.0 crystallized as single spinel phases. Structure refinements of the spinel single crystals, which grew in the ranges of 0.0 x 0.6 and 1.2 < x 2.0, show that the degree of randomness of cation distribution between A and B sites increases as x approaches the two-phase region. This means that the degree of the size mismatch among Mg2+, Fe3+ and Al3+occupying each equivalent mixing site increases as x approaches the two-phase region. Consequently, if the coexistence of two spinels observed in the intermediate compositions reveals the existence of a miscibility gap at low temperatures, this increase in the degree of the size mismatch among the three cations is suggested as a factor of energetic destabilization to form the miscibility gap.  相似文献   
6.
C. Mizota   《Applied Geochemistry》2009,24(11):2027-2033
Two currently breeding colonies (Matsushima Bay and Rishiri island; northern Japan) of predominant Black-tailed Gull (Larus crassiostris) were studied for N isotopic patterns of flora, which is affected by increased supply of inorganic soil N derived from the microbial transformation of feces. Coupled samples of feces, topsoil and flora were collected in early to mid July (2008), when input of fecal N onto soils was at its maximum. As bird migration and breeding continued, native Japanese red-pine (Pinus densiflora), junipers (Juniperus chinensis and Juniperus rigita; Matsushima Bay colony) and Sasa senanensis (Rishiri colony) declined, while ornithocoprophilus exotic plants succeeded. Among tree species on the islands, P. densiflora with ectomycorrizal colonization appears highly susceptible to elevated concentrations of NH4–N in the topsoil. A mechanism for best explaining the plant succession associated with the breeding activity of Black-tailed Gull was evidenced by two parameters: first, concomitant elevation of N content in the flora and second, inorganic soil N content, along with changes in N isotopic composition (δ15N). Earlier isotopic data on the foliar N affected by breeding activity were compiled and reviewed. Emphasis was put on isotopic information for inorganic N in soils that controls plant succession.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号