首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   1篇
地质学   10篇
天文学   2篇
  2018年   1篇
  2017年   2篇
  2015年   1篇
  2012年   2篇
  2011年   1篇
  2010年   2篇
  2008年   1篇
  2007年   2篇
排序方式: 共有12条查询结果,搜索用时 31 毫秒
1.
M. V. Mints 《Geotectonics》2011,45(4):267-290
The integral 3D model of the deep structure of the Early Precambrian crust in the East European Craton is based on interpretation of the 1-EU, 4B, and TATSEIS seismic CDP profiles in Russia and the adjacent territory of Finland (FIRE project). The geological interpretation of seismic images of the crust is carried out in combination with consideration of geological and geophysical data on the structure of the Fennoscandian Shield and the basement of the East European platform. The model displays tectonically delaminated crust with a predominance of low-angle boundaries between the main tectonic units and the complex structure of the crust-mantle interface, allowing correlation of the deep structure of the Archean Kola, Karelian, and Kursk granite-greenstone terrane with the Volgo-Uralia granulite-gneiss terrane, as well as the Paleoproterozoic intracontinental collision orogens (the Lapland-Mid-Russia-South Baltia orogen and the East Voronezh and Ryazan-Saratov orogens) with the Svecofennian accretionary orogen. The lower crustal “layer” at the base of the Paleoproterozoic orogens and Archean cratons was formed in the Early Paleoproterozoic as a result of underplating and intraplating by mantle-plume mafic magmas and granulite-facies metamorphism. The increase in the thickness of this “layer” was related to hummocking of the lower crustal sheets along with reverse and thrust faulting in the upper crust. The middle crust was distinguished by lower rigidity and affected by ductile deformation. The crust of the Svecofennian Orogen is composed of tectonic sheets plunging to the northeast and consisting of island-arc, backarc, and other types of rocks. These sheets are traced in seismic sections to the crust-mantle interface.  相似文献   
2.
M. V. Mints 《Geotectonics》2007,41(4):257-280
The evolution of the North American, East European, and Siberian cratons is considered. The Paleoproterozoic juvenile associations concentrate largely within mobile belts of two types: (1) volcanic-sedimentary and volcanic-plutonic belts composed of low-grade metamorphic rocks of greenschist to low-temperature amphibolite facies and (2) granulite-gneiss belts with a predominance of high-grade metamorphic rocks of high-temperature amphibolite to ultrahigh-temperature granulite facies. The first kind of mobile belt includes paleosutures made up of not only oceanic and island-arc rock associations formed in the process of evolution of relatively short-lived oceans of the Red Sea type but also peripheral accretionary orogens consisting of oceanic, island-arc, and backarc terranes accreted to continental margins. The formation of the second kind of mobile belt was related to the activity of plumes expressed in vigorous heating of the continental crust; intraplate magmatism; formation of rift depressions filled with sediments, juvenile lavas, and deposits of pyroclastic flows; and metamorphism of lower and middle crustal complexes under conditions of granulite and high-temperature amphibolite facies that, in addition, spreads over the fill of rift depressions. The evolution of mobile belts pertaining to both types ended with thrusting in a collisional setting. Five periods are recognized in Paleoproterozoic history: (1) origin and development of a superplume in the mantle that underlay the Neoarchean supercontinent; this process resulted in separation and displacement of the Fennoscandian fragment of the supercontinent (2.51–2.44 Ga); (2) a period of relatively quiet intraplate evolution complicated by locally developed plume-and plate-tectonic processes (2.44–2.0 (2.11) Ga); (3) the origin of a new superplume in the subcontinental mantle (2.0–1.95 Ga); (4) the complex combination of intense global plume-and plate-tectonic processes that led to the partial breakup of the supercontinent, its subsequent renascence and the accompanying formation of collisional orogens in the inner domains of the renewed Paleoproterozoic supercontinent, and the emergence of accretionary orogens along some of its margins (1.95–1.75 (1.71) Ga); and (5) postorogenic and anorogenic magmatism and metamorphism (<1.75 Ga).  相似文献   
3.
We examine the scattering of single stars from an open star cluster. The probability of the capture of a star by a star cluster is dependent on the velocity and mass of the star, and the stars that are not captured experience a velocity change. For low-velocity stars there is an exponential decrease of the capture probability with the initial velocity, and the velocity change decreases almost linearly. For high-velocity stars there is a v −6 dependence for the capture probability, and a v −1 dependence for the velocity change. Analytical estimations, Monte Carlo and full N -body simulations are all in good agreement.  相似文献   
4.
5.
6.
7.
8.
The model of supercontinent cycles is revisited on the basis of reevaluation of existing ideas on the geodynamics and tectonics of granulite gneiss belts and areals. Granulite-gneiss belts and areals of a regional scale correspond to mantle–plume (superplume) activity and form the major components of intracontinental orogens. The evolution of geodynamic settings of the Earth’s crust origin can be imagined as a “spiral sequence”: (1) interaction of mantle plumes and “embryonic” microplate tectonics during the Paleo- Mesoarchean (~3.80–2.75 Ga); (2) plume-tectonics and local plume-driven plate-tectonics within supercontinent during Neoarchean and Proterozoic (~2.75–0.85 Ga); (3) plate tectonics in the Phanerozoic along with a reduced role of mantle plumes starting from ~0.85 Ga.  相似文献   
9.
10.
Dokukina  K. A.  Konilov  A. N.  Van  K. V.  Mints  M. V. 《Doklady Earth Sciences》2017,477(1):1353-1357

In the Salma eclogite of the Belomorian eclogite province, a dumortierite–phengite–corundum–bearing quartz–feldspar rock has been studied: its primary HP mineral paragenesis included garnet, phengite, and quartz. The phengite–quartz rocks were formed during dehydration and/or melting of boroncontaining rocks when they were dipped in the Meso- Neoarchaean subduction zone to a depth of not less than 70 km. As a result of the subsequent superimposed high-temperature metamorphic events under PT conditions of high-pressure granulite facies, the phengite in quartz underwent incongruent dehydration melting with formation of complex polymineral pseudomorphs, consisting of feldspars, biotite, newly formed muscovite, kyanite, corundum, and dumortierite. New estimates of the metamorphic temperature (850–900°C according to the melting reactions of phengite and the dumortierite field of stability; about 1000°C by the reintegrated composition of feldspar–mesoperthite) that affected the HP parageneses of Salma eclogitized rocks are at least 50–100°C (or even more) higher than them estimated earlier.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号