首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   0篇
  国内免费   1篇
地球物理   6篇
地质学   12篇
海洋学   1篇
天文学   11篇
  2021年   4篇
  2019年   1篇
  2018年   6篇
  2017年   2篇
  2016年   3篇
  2014年   3篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2006年   2篇
  2005年   2篇
  2003年   1篇
  2000年   1篇
排序方式: 共有30条查询结果,搜索用时 15 毫秒
1.
Melnik  A. M.  Dambis  A. K. 《Astronomy Reports》2021,65(2):71-81
Astronomy Reports - We estimated the contribution of binary systems to the velocity dispersion inside OB-associations derived from Gaia DR2 proper motions. The maximum contribution to the velocity...  相似文献   
2.
3.
An unusual solar burst was observed simultaneously by two decameter radio telescopes UTR-2 (Kharkov, Ukraine) and URAN-2 (Poltava, Ukraine) on 3 June 2011 in the frequency range of 16?–?28 MHz. The observed radio burst had some unusual properties, which are not typical for the other types of solar radio bursts. Its frequency drift rate was positive (about 500 kHz?s?1) at frequencies higher than 22 MHz and negative (100 kHz?s?1) at lower frequencies. The full duration of this event varied from 50 s up to 80 s, depending on the frequency. The maximum radio flux of the unusual burst reached ≈103 s.f.u. and its polarization did not exceed 10 %. This burst had a fine frequency-time structure of unusual appearance. It consisted of stripes with the frequency bandwidth 300?–?400 kHz. We consider that several accompanied radio and optical events observed by SOHO and STEREO spacecraft were possibly associated with the reported radio burst. A model that may interpret the observed unusual solar radio burst is proposed.  相似文献   
4.
When a highly viscous bubbly magma is sufficiently decompressed, layer-by-layer fracturing propagates through the magma at a certain speed (fragmentation speed). On the basis of a recent shock tube theory by Koyaguchi and Mitani [Koyaguchi, T., Mitani, N. K., 2005. A theoretical model for fragmentation of viscous bubbly magmas in shock tubes. Journal of Geophysical Research 110 (B10), B10202. doi:10.1029/2004JB003513.], gas overpressures at the fragmentation surface are estimated from experimental data on fragmentation speed in shock tube experiments for natural volcanic rocks with various porosities. The results show that gas overpressure at the fragmentation surface increases as initial sample pressure increases and sample porosity decreases. We propose a new fragmentation criterion to explain the relationship between the gas overpressure at the fragmentation surface, the initial pressure and the porosity. Our criterion is based on the idea that total fragmentation of highly viscous bubbly magmas occurs when the tensile stress at the midpoint between bubbles exceeds a critical value. We obtain satisfactory agreement between our simulation and experiment when we assume that the critical value is inversely proportional to the square root of bubble wall thickness. This fragmentation criterion suggests that long micro-cracks or equivalent flaws (e.g., irregular-shaped bubbles) that reach the midpoints between bubbles are a dominant factor to determine the bulk strength of the bubbly magma.  相似文献   
5.
We present the first detailed seismic velocity models of the crust and uppermost mantle around the Mirnyi kimberlite field in Yakutia, Siberia. We have digitized vintage seismograms that were acquired in 1981 and 1983 by use of Taiga analogue seismographs along two perpendicular seismic profiles. The 370-km long, northwest striking profile I across the kimberlite pipe was covered by 41 seismographs, which recorded seismic signals from 21 chemical shots along the line, including one off-end shot. The perpendicular, 340-km long profile II across profile I ca. 30 km to the south of the Mirnyi kimberlite field was covered by 45 seismographs, which recorded seismic signals from 22 chemical shots, including four off-end shots. Each shot involved detonation of between 1.5 and 6.0 tons of TNT, distributed in individual charges of 100–200 kg in shallow water (< 2 m deep). The data is of high quality with high signal/noise ratio to the farthest offsets. We present the results from two-dimensional ray tracing, forward modelling.Both velocity models show normal cratonic structure of the ca. 45-km-thick crust with only slight undulation of the Moho. However, relatively small seismic velocity is detected to 25-km depth in a ca. 60-km wide zone around the kimberlite pipe, surrounded by elevated velocity (> 6.3 km/s) in the upper crust. The lower crust has a relatively constant velocity of 6.8–6.9 km/s. It appears relatively unaffected by the presence of the kimberlite field. Extremely large P-wave velocity (> 8.7 km/s) of the sub-Moho mantle is interpreted along profile I, except for a 70-km wide zone with a “normal” Pn velocity of 8.1 km/s below the kimberlite. Profile II mainly shows Pn velocities of 8.0–8.2 km/s, with unusually large velocity (> 8.5 km/s) in two, ca. 100-km wide zones, at its southwestern end, one zone being close to the kimberlite field. The nature of these exceptionally large, sub-Moho mantle velocities is not yet understood. The difference in velocity in the two profile directions indicates anisotropy, but the effect of unusual rock composition, e.g. from a high concentration of garnet, cannot be excluded.  相似文献   
6.
We present the results of solar observations at 20 and 25 MHz with the Ukrainian T-shaped Radio telescope of the second modification (UTR-2) in the interferometric session from 27 May to 2 June 2014. In this case, the different baselines 225, 450, and 675 m between the sections of the east–west and north–south arms of UTR-2 were used. On 29 May 2014, strong sporadic radio emission consisting of Type III, Type II, and Type IV bursts was observed. On other days, there was no solar radio activity in the decameter range. We discuss the observation results of the quiet Sun. Fluxes and sizes of the Sun in east–west and north–south directions were measured. The average fluxes were 1050?–?1100 Jy and 1480?–?1570 Jy at 20 and 25 MHz, respectively. The angular sizes of the quiet Sun in equatorial and polar directions were \(55'\) and \(49'\) at 20 MHz and \(50'\) and \(42'\) at 25 MHz. The brightness temperatures of the radio emission were \({T_{\mathrm{b}}} = 5.1 \times{10^{5}}~\mbox{K}\) and \({T_{\mathrm{b}}} = 5.7 \times{10^{5}}~\mbox{K}\) at 20 and 25 MHz, respectively.  相似文献   
7.
The results of observations of solar decametric drift pair bursts are presented. These observations were carried out during a Type III burst storm on July 11–21, 2002, with the decameter radio telescope UTR-2, equipped with new back-end facilities. High time and frequency resolution of the back-end allowed us to obtain new information about the structure and properties of these bursts. The statistical analysis of more than 700 bursts observed on 13–15 July was performed separately for “forward” and “reverse” drift pair bursts. Such an extensive amount of these kind of bursts has never been processed before. It should be pointed out that “forward” and “reverse” drift pair bursts have a set of similar parameters, such as time delay between the burst elements, duration of an element, and instant bandwidth of an element. Nevertheless some of their parameters are different. So, the absolute average value of frequency drift rate for “forward” bursts is 0.8 MHz s−1, while for “reverse” ones it is 2 MHz s−1. The obtained functional dependencies “drift rate vs. frequency” and “flux density vs. frequency” were found to be different from the current knowledge. We also report about the observation of unusual variants of drift pairs, in particular, of “hook” bursts and bursts with fine time and frequency structure. A possible mechanism of drift pairs generation is proposed, according to which this emission may originate from the interaction of Langmuir waves with the magnetosonic waves having equal phase and group velocities.  相似文献   
8.
The gas permeability of volcanic rocks may influence various eruptive processes. The transition from a quiescent degassing dome to rock failure (fragmentation) may, for example, be controlled by the rocks permeability, in as much as it affects the speed by which a gas overpressure in vesicles is reduced in response to decompression. Using a modified shock-tube-based fragmentation bomb (Alidibirov and Dingwell 1996a,b; Spieler et al. 2003a), we have measured unsteady-state permeability at a high initial pressure differential. Following sudden decompression above the rock cylinder, pressurized gas flows through the sample. Two pressure transducers record the pressure signals above and below the sample. A transient 1D filtration code has been developed to calculate permeability using the experimental decay curve of the lower pressure transducer. Additionally an analytical steady-state method to achieve permeability is presented as an alternative to swiftly predict the sample permeability in a sufficiently precise manner. Over 100 permeability measurements have been performed on samples covering a wide range of porosity. The results show a general positive relationship between porosity and permeability with a high data scatter. Our preferred interpretation of the results is a combination of two different, but overlapping effects. We propose that at low porosities, gas escape occurs predominantly through microcracks or elongated micropores and therefore could be described by simplified forms of Kozeny–Carman relations (Carman 1956) and fracture flow models. At higher porosities, the influence of vesicles becomes progressively stronger as they form an increasingly connected network. Therefore, a model based on the percolation theory of fully penetrable spheres is used, as a first approximation, to describe the permeability-porosity trend. In the data acquired to date it is evident, that in addition to the porosity control, the samples bubble size, shape and distribution strongly influence the permeability. This leads to a range of permeability values up to 2.5 orders of magnitude at a given porosity.  相似文献   
9.
Samples of gilsonite from Adzharia, anthraxolite and graphite of coal from Taimyr, shungite from Karelia, and anthracite from Donbass are studied using Raman spectroscopy. Peaks at 1600 cm?1, indicating the presence of nanographite, are recorded in all samples. The anthracite sample from Donbass, 1330 cm?1, corresponds to the sp3-line of carbon hybridization conforming to a nanodiamond. It is concluded that in nature diamonds can be formed at late stages of lithogenesis (catagensis, metagenesis), and for coals, it can occur at the zeolite stage of regional metamorphism of rocks, before the green schist stage.  相似文献   
10.
Hydrothermal alteration of kimberlite by convective flows of external water   总被引:1,自引:0,他引:1  
Kimberlite volcanism involves the emplacement of olivine-rich volcaniclastic deposits into volcanic vents or pipes. Kimberlite deposits are typically pervasively serpentinised as a result of the reaction of olivine and water within a temperature range of 130–400 °C or less. We present a model for the influx of ground water into hot kimberlite deposits coupled with progressive cooling and serpentisation. Large-pressure gradients cause influx and heating of water within the pipe with horizontal convergent flow in the host rock and along pipe margins, and upward flow within the pipe centre. Complete serpentisation is predicted for wide ranges of permeability of the host rocks and kimberlite deposits. For typical pipe dimensions, cooling times are centuries to a few millennia. Excess volume of serpentine results in filling of pore spaces, eventually inhibiting fluid flow. Fresh olivine is preserved in lithofacies with initial low porosity, and at the base of the pipe where deeper-level host rocks have low permeability, and the pipe is narrower leading to faster cooling. These predictions are consistent with fresh olivine and serpentine distribution in the Diavik A418 kimberlite pipe, (NWT, Canada) and with features of kimberlites of the Yakutian province in Russia affected by influx of ground water brines. Fast reactions and increases in the volume of solid products compared to the reactants result in self-sealing and low water–rock ratios (estimated at <0.2). Such low water–rock ratios result in only small changes in stable isotope compositions; for example, δO18 is predicted only to change slightly from mantle values. The model supports alteration of kimberlites predominantly by interactions with external non-magmatic fluids.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号