首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   161篇
  免费   7篇
测绘学   4篇
大气科学   14篇
地球物理   39篇
地质学   59篇
海洋学   17篇
天文学   19篇
自然地理   16篇
  2022年   2篇
  2021年   6篇
  2020年   8篇
  2019年   4篇
  2018年   7篇
  2017年   3篇
  2016年   5篇
  2015年   7篇
  2014年   8篇
  2013年   12篇
  2012年   7篇
  2011年   13篇
  2010年   16篇
  2009年   17篇
  2008年   11篇
  2007年   6篇
  2006年   5篇
  2005年   7篇
  2004年   3篇
  2003年   5篇
  2002年   8篇
  2001年   1篇
  1999年   2篇
  1996年   1篇
  1994年   1篇
  1991年   1篇
  1988年   1篇
  1976年   1篇
排序方式: 共有168条查询结果,搜索用时 0 毫秒
1.
Continuous wavelet analyses of hourly time series of air temperature, stream discharge, and precipitation are used to compare the seasonal and inter‐annual variability in hydrological regimes of the two principal streams feeding Bow Lake, Banff National Park, Alberta: the glacial stream draining the Wapta Icefields, and the snowmelt‐fed Bow River. The goal is to understand how water sources and flow routing differ between the two catchments. Wavelet spectra and cross‐wavelet spectra were determined for air temperature and discharge from the two streams for summers (June–September) 1997–2000, and for rainfall and discharge for the summers of 1999 and 2000. The diurnal signal of the glacial runoff was orders of magnitude higher in 1998 than in other years, indicating that significant ice exposure and the development of channelized glacial drainage occurred as a result of the 1997–98 El Niño conditions. Early retreat of the snowpack in 1997 and 1998 led to a significant summer‐long input of melt runoff from a small area of ice cover in the Bow River catchment; but such inputs were not apparent in 1999 and 2000, when snow cover was more extensive. Rainfall had a stronger influence on runoff and followed quicker flow paths in the Bow River catchment than in the glacial catchment. Snowpack thickness and catchment size were the primary controls on the phase relationship between temperature and discharge at diurnal time scales. Wavelet analysis is a fast and effective means to characterize runoff, temperature, and precipitation regimes and their interrelationships and inter‐annual variability. The technique is effective at identifying inter‐annual and seasonal changes in the relative contributions of different water sources to runoff, and changes in the time required for routing of diurnal meltwater pulses through a catchment. However, it is less effective at identifying changes/differences in the type of the flow routing (e.g. overland flow versus through flow) between or within catchments. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
2.
Grain shape is a key factor affecting the mechanical properties of granular materials. However, grain shape quantification techniques to distinguish one granular material from another have not reached a stage of development for inclusion in modeling the behavior of granular materials. Part of the problem is the equipment of choice for grain shape measurement is the scanning electron microscopes. This is a relatively expensive and complex device. In this paper, we investigate a practical approach using light microscopy to quantify grain shape and to identify the key shape parameters that can distinguish grains. A light microscope was found to produce grain images with sufficient quality for the purpose of observing the grain shape profile. Several grain shape parameters were determined for eight different sands. We found Circularity, Roundness, Compactness, Sphericity, Aspect Ratio and ModRatio to be the key shape parameters that differentiate these sand grains.  相似文献   
3.
4.
Silicic volcanic deposits (>65 wt% SiO2), which occur as domes, lavas and pyroclastic deposits, are relatively abundant in the Macolod Corridor, SW Luzon, Philippines. At Makiling stratovolcano, silicic domes occur along the margins of the volcano and are chemically similar to the silicic lavas that comprise part of the volcano. Pyroclastic flows are associated with the Laguna de Bay Caldera and these are chemically distinct from the domes and lavas at Makiling stratovolcano. As a whole, samples from the Laguna de Bay Caldera contain lower concentrations of MgO and higher concentrations of Fe2O3(t) than the samples from domes and lavas. The Laguna de Bay samples are more enriched in incompatible trace elements. The silicic rocks from the domes, Makiling Volcano and Laguna de Bay Caldera all contain high alkalis and high K2O/Na2O ratios. Melting experiments of primitive basalts and andesites demonstrate that it is difficult to produce high K2O/Na2O silicic magmas by fractional crystallization or partial melting of a low K2O/Na2O source. However, recent melting experiments (Sisson et al., Contrib Mineral Petrol 148:635–661, 2005) demonstrate that extreme fractional crystallization or partial melting of K-rich basalts can produce these silicic magmas. Our model for the generation of the silicic magmas in the Macolod Corridor requires partial melting of mantle-derived, evolved, moderate to K-rich, crystallized calc-alkaline magmas that ponded and crystallized in the mid-crust. Major and trace element variations, along with oxygen isotopes and ages of the deposits, are consistent with this model. Electronic Supplementary Material Supplementary material is available for this article at  相似文献   
5.
6.
7.
Arctic landscapes are believed to be highly sensitive to climate change and accelerated disturbance of permafrost is expected to significantly impact the rate of carbon cycling. While half the global soil organic matter (SOM) is estimated to reside in Arctic soils, projected warmer temperatures and permafrost disturbance will release much of this SOM into waterways in the form of dissolved organic matter (DOM). The spring thaw and subsequent flushing of soils releases the highest contributions of DOM annually but has historically been undersampled due to the difficulties of sampling during this period. In this study, passive samplers were placed throughout paired High Arctic watersheds during the duration of the 2008 spring flush in Nunavut, Canada. The watersheds are very similar with the exception of widespread active layer detachments (ALDs) that occurred within one of the catchments during a period of elevated temperatures in the summer of 2007. DOM samples were analyzed for structural and spectral characteristics via nuclear magnetic resonance (NMR) and fluorescence spectroscopy as well as vulnerability to degradation with simulated solar exposure. Lignin-derived phenols were further assessed utilizing copper(II) oxide (CuO) oxidation and gas chromatography/mass spectrometry (GC/MS). The samples were found to have very low dissolved lignin phenol content (∼0.07% of DOC) and appear to originate from primarily non-woody angiosperm vegetation. The acid/aldehyde ratios for dissolved vanillyl phenols were found to be high (up to 3.6), indicating the presence of highly oxidized lignin. Differences between DOM released from the ALD vs. the undisturbed watershed suggest that these shallow detachment slides have significantly impacted the quality of Arctic DOM. Although material released from the disturbed catchment was found to be highly oxidized, DOM in the lake into which this catchment drained had chemical characteristics indicating high contributions from microbial and/or primary productivity. The resulting pool of dissolved carbon within the lake appears to be more biologically- and photochemically-labile than material from the undisturbed system. These disturbances may have implications for projected climate warming; sustained elevated temperatures would likely perpetuate widespread ALDs and further affect carbon cycling in this environment.  相似文献   
8.
In this study, we employ wavelength‐dispersive X‐ray fluorescence (WDXRF) to characterize construction materials from Formative civic architecture (1000 B.C.E.–C.E. 400), ethnographic mudbricks, and off‐site controls from the Taraco Peninsula, Bolivia. The preparation of earthen construction materials for civic buildings can shed light on aspects of community development such as labor organization, resource management, and architectural technologies. We apply geochemical results to reconstructing how public buildings were made as communities moved toward socio‐political complexity in this region. However, there are few geochemical studies in the Andes, and little prior scientific analysis of earthen architecture. We therefore tested the efficacy of WDXRF for this region, and developed control materials. Our archaeological samples were selected from two Formative villages, Chiripa and Kala Uyuni. In this study, we performed WDXRF analyses on 63 archaeological and control samples including archaeological floors, walling, plasters, and mortars, as well as contemporary ethnographic walling and topsoils. Elemental signatures for 28 elements clearly distinguished the archaeological flooring, walling, plaster, and mortars from ethnographic and off‐site controls. More subtle variations were detected that distinguish study sites and the different material types. Laboratory‐calibrated multi‐element XRF effectively supports efforts to reconstruct the pathways to social complexity in the Titicaca Basin.  相似文献   
9.
10.
The declining health of marine ecosystems around the world is evidence that current piecemeal governance is inadequate to successfully support healthy coastal and ocean ecosystems and sustain human uses of the ocean. One proposed solution to this problem is ecosystem-based marine spatial planning (MSP), which is a process that informs the spatial distribution of activities in the ocean so that existing and emerging uses can be maintained, use conflicts reduced, and ecosystem health and services protected and sustained for future generations. Because a key goal of ecosystem-based MSP is to maintain the delivery of ecosystem services that humans want and need, it must be based on ecological principles that articulate the scientifically recognized attributes of healthy, functioning ecosystems. These principles should be incorporated into a decision-making framework with clearly defined targets for these ecological attributes. This paper identifies ecological principles for MSP based on a synthesis of previously suggested and/or operationalized principles, along with recommendations generated by a group of twenty ecologists and marine scientists with diverse backgrounds and perspectives on MSP. The proposed four main ecological principles to guide MSP—maintaining or restoring: native species diversity, habitat diversity and heterogeneity, key species, and connectivity—and two additional guidelines, the need to account for context and uncertainty, must be explicitly taken into account in the planning process. When applied in concert with social, economic, and governance principles, these ecological principles can inform the designation and siting of ocean uses and the management of activities in the ocean to maintain or restore healthy ecosystems, allow delivery of marine ecosystem services, and ensure sustainable economic and social benefits.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号