首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   3篇
测绘学   1篇
大气科学   2篇
地球物理   10篇
地质学   13篇
海洋学   4篇
天文学   1篇
自然地理   3篇
  2018年   2篇
  2017年   3篇
  2014年   2篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2009年   1篇
  2008年   3篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2003年   1篇
  2002年   2篇
  2000年   2篇
  1997年   1篇
  1992年   1篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1980年   1篇
  1979年   1篇
排序方式: 共有34条查询结果,搜索用时 31 毫秒
1.
Concentrations of atmospheric Hg species, elemental Hg (Hg°), reactive gaseous Hg (RGM), and fine particulate Hg (Hg-PM2.5) were measured at a coastal site near Weeks Bay, Alabama from April to August, 2005 and January to May, 2006. Mean concentrations of the species were 1.6 ± 0.3 ng m−3, 4.0 ± 7.5 pg m−3 and 2.7 ± 3.4 pg m−3, respectively. A strong diel pattern was observed for RGM (midday maximum concentrations were up to 92.7 pg m−3), but not for Hg° or Hg-PM2.5. Elevated RGM concentrations (>25 pg m−3) in April and May of 2005 correlated with elevated average daytime O3 concentrations (>55 ppbv) and high light intensity (>500 W m−2). These conditions generally corresponded with mixed continental-Gulf and exclusively continental air mass trajectories. Generally lower, but still elevated, RGM peaks observed in August, 2005 and January–March, 2006 correlated significantly (p < 0.05) with peaks in SO2 concentration and corresponded to periods of high light intensity and lower average daytime O3 concentrations. During these times air masses were dominated by trajectories that originated over the continent. Elevated RGM concentrations likely resulted from photochemical oxidation of Hg° by atmospheric oxidants. This process may have been enhanced in and by the near-shore environment relative to inland sites. The marine boundary layer itself was not found to be a significant source of RGM.  相似文献   
2.
Monthly growth of the fouling community at eight test panel sites in the Loxahatchee River Estuary was related to salinity and temperature. Growth was lowest in January 1981 (averaging 23 g per m2, dry weight), and increased during spring and early summer with increasing water temperature. Maximum growth occurred during early or midsummer at upstream locations, before river or canal discharge substantially reduced salinity, and in late summer at downstream locations. Growth was greatest at salinities slightly less than that of seawater and decreased at salinities less than about 10‰. Growth was suppressed throughout the estuary in August 1981, probably because of the sudden decrease in temperature and salinity, and perhaps the increase in physical scouring, caused by runoff from Tropical Storm Dennis. Large loads of nutrients transported to the estuary from storm runoff, however, may have subsequently stimulated growth, which increased in September 1981 to the maximum for the year (averaging 683 g per m2, dry weight).  相似文献   
3.
In the face of increasing urbanization, there is growing interest in application of microscale hydrologic solutions to minimize storm runoff and conserve water at the source. In this study, a physically based numerical model was developed to understand hydrologic processes better at the urban residential scale and the interaction of these processes among different best management practices (BMPs). This model simulates hydrologic processes using an hourly interval for over a full year or for specific storm events. The model was applied to treatment and control single‐family residential parcels in Los Angeles, California. Data collected from the control and treatment sites over 2 years were used to calibrate and validate the model. Annual storm runoff to the street was eliminated by 97% with installation of rain gutters, a driveway interceptor, and lawn retention basin. Evaluated individually, the driveway interceptor was the most effective BMP for storm runoff reduction (65%), followed by the rain gutter installation (28%), and lawn converted to retention basin (12%). An 11 m3 cistern did not substantially reduce runoff, but provided 9% of annual landscape irrigation demand. Simulated landscape irrigation water use was reduced 53% by increasing irrigation system efficiency, and adjusting application rates monthly based on plant water demand. The model showed that infiltration and surface runoff processes were particularly sensitive to the soil's physical properties and its effective depth. Replacing the existing loam soil with clay soil increased annual runoff discharge to the street by 63% when climate and landscape features remained unchanged. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
4.
A technique is presented to estimate photosynthetically available radiation (PAR) at the ocean surface from Geostationary Ocean Color Imager (GOCI) data. The sensor is adapted to the problem, since it measures at visible wavelengths and does not saturate over clouds, and the hourly data provides adequate temporal sampling to describe diurnal variability of clouds. Instantaneous surface PAR is computed as the difference between the solar irradiance incident at the top of the atmosphere (known) and the solar irradiance reflected back to space (derived from GOCI radiance), taking into account absorption and scattering by the clear atmosphere (modeled). Knowledge of pixel composition is not required. Apart from planetary albedo and sun zenith angle, the model parameters are fixed at their climatological values. The instantaneous PAR estimates at hourly intervals are integrated over time to provide daily values. The technique is applied to GOCI imagery acquired on 5 April 2011, and the GOCI daily PAR estimates are compared with those obtained from MODerate Resolution Imaging Spectrometer (MODIS) data. Agreement is good between the two types of estimates, with a coefficient of determination (r 2) of 0.778, a bias of 0.23 Em?2d?1 (0.5% with higher GOCI values), and a root-mean-squared difference of 5.00 Em?2d?1 (11.2%). Differences in cloudy conditions are attributed to daily cloudiness changes not captured by the MODIS observations. The comparison statistics indicate that GOCI PAR estimates have acceptable accuracy for regional studies of aquatic photosynthesis.  相似文献   
5.
Fine-grained æolian sediments are an important component of many loessic soil–landscape systems across south-eastern Australia. These loessic soils are commonly related to the deposition of ‘parna’, a red, clayey, calcareous material proposed to have been transported predominantly as silt-sized pellets and companion silt grains. However, it is apparent that loessic soils of south-eastern Australia do not necessarily exhibit or retain the morphological features regarded as typical of parna. This may be due to variations in post-depositional pedogenic processes operating over long periods of time. It is important to understand this inconsistency in loessic soil expression because the physico-chemical and structural attributes of these profiles may significantly affect catchment-wide processes such as salinisation and erosion. In this paper, the pedological features of a range of previously identified loessic profiles occurring across south-eastern Australia are examined to assess the relative importance of climate and local landscape processes on profile characteristics. Most of the sampling sites occur in mid- to upper-slope positions, while the annual average rainfall of the sites ranges from 440 mm to 650 mm. The deepest profiles in the driest locations tend to yield whole-coloured, slightly alkaline, slightly saline and sodic subsoils with moderate cation exchange capacities. Profiles in the wettest locations are generally characterised by smaller cation exchange capacities, are acidic, non-saline and non-sodic, and feature prominent mottling and sesquioxide nodules. Measurements and predictions of the structural attributes of the profiles indicate that all topsoils are quite stable to wetting, whereas subsoils exhibit variable stabilities, depending on physico-chemical properties. These results appear to demonstrate a broad climosequence effect on loessic soil attributes. The climosequence effect was compared to the changes in loessic profile characteristics down a case study toposequence in southern New South Wales. The toposequence indicates that local landscape features such as slope and drainage have also been important in determining the properties of these materials, as has re-working by colluvial processes. We conclude that to explain adequately the current characteristics of profiles containing fine-grained æolian sediments, particularly their salinisation potential and stability to erosion, it is critical to consider both the past and present climate and the local soil-forming processes.  相似文献   
6.
Abstract

Potentially mineralised Paleozoic basement rocks in the southern Thomson Orogen region of southern Queensland and northern New South Wales are covered by varying thicknesses of Mesozoic to Cenozoic sediments. To assess cover thickness and methods for estimating depth to basement, we collected new airborne electromagnetic (AEM), seismic refraction, seismic reflection and audio-frequency magnetotelluric data and combined these with new depth to magnetic basement models from airborne magnetic line data and ground gravity data along selected transects. The results of these investigations over two borehole sites, GSQ Eulo 1 and GSQ Eulo 2, show that cover thickness can be reliably assessed to within the confidence limits of the various techniques, but that caveats exist regarding the application of each of the disciplines. These techniques are part of a rapid-deployment explorers’ toolbox of geophysical techniques that have been tested at two sites in Australia, the Stavely region of western Victoria, and now the southern Thomson Orogen in northern New South Wales and southern Queensland. The results shown here demonstrate that AEM and ground geophysics, and to a lesser extent depth to magnetic source modelling, can produce reliable results when applied to the common exploration problem of determining cover thickness. The results demonstrate that portable seismic systems, designed for geotechnical site investigations, are capable of imaging basement below 300 m of unlithified Eromanga Basin cover as refraction and reflection data. The results of all methods provide much information about the nature of the basement–cover interface and basement at borehole sites in the southern Thomson Orogen, in that the basement is usually weathered, the interface has paleotopography, and it can be recognised by its density, natural gamma, magnetic susceptibility and electrical conductivity contrasts.  相似文献   
7.
A study using multiple techniques provided insight into tectonic influences on ground water systems; the results can help to understand ground water systems in the tectonically active western United States and other parts of the world. Ground water in the San Bernardino Valley (Arizona, United States and Sonora, Mexico) is the main source of water for domestic use, cattle ranching (the primary industry), and the preservation of threatened and endangered species. To improve the understanding of ground water occurrence, movement, and sustainability, an investigation was conducted using a number of complementary methods, including major ion geochemistry, isotope hydrology, analysis of gases dissolved in ground water, aquifer testing, geophysics, and an examination of surface and subsurface geology. By combining information from multiple lines of investigation, a more complete picture of the basin hydrogeology was assembled than would have been possible using fewer methods. The results show that the hydrogeology of the San Bernardino Valley is markedly different than that of its four neighboring basins in the United States. The differences include water quality, chemical evolution, storage, and residence time. The differences result from the locally unique geology of the San Bernardino Valley, which is due to the presence of a magmatically active accommodation zone (a zone separating two regions of normal faults with opposite dips). The geological differences and the resultant hydrological differences between the San Bernardino Valley and its neighboring basins may serve as a model for the distinctive nature of chemical evolution of ground water in other basins with locally distinct tectonic histories.  相似文献   
8.
We suggest that different equations of state (EOS) algorithms can and frequently will provide very different predictions of CO2 migration following injection for sequestration. Rather than carry out an exhaustive examination of all EOS algorithms available, we elected to evaluate this general hypothesis by making detailed comparisons of simulation results of two very common EOS algorithms. We simulated and compared CO2 migration patterns using two fundamentally different EOS algorithms – Modified Redlich-Kwong EOS (MRKEOS) and Span and Wagner EOS (SWEOS). In general, the predictions of thermophysical properties for both algorithms are close, except for a contrast in the predicted fugacity coefficient of CO2, which subsequently propagates to a contrast in predicted solubility in water/brine. Typically, MRKEOS underestimates solubility of CO2 compared to both SWEOS and experimental solubility data. In simulations of CO2 migration, dissolution rates of separate-phase CO2 predicted from the two EOS algorithms were significantly different, even for small contrasts in predicted fluid properties from EOS algorithms, resulting in markedly different migration patterns.  相似文献   
9.
Climate change is one of the most compelling challenges for science communication today. Societal reforms are necessary to reduce the risks posed by a changing climate, yet many people fail to recognize climate change as a serious issue. Unfortunately, the accumulation of scientific data, in itself, has failed to compel the general public on the urgent need for pro-environmental policy action. We argue that certain metaphors for the human-environment relationship can lead people to adopt a more nuanced and responsible conception of their place in the natural world. In two studies, we tested properties of multiple metaphors with the general public (study 1) and experts on climate change (study 2). The metaphor “the earth is our home” resonated with climate experts as well as diverse subpopulations of the general public, including conservatives and climate-change deniers.  相似文献   
10.
There is widespread recognition of the importance of long-term experimental studies of plant interactions, but such experiments are rarely conducted. Pairwise interactions between three species of perennial grasses were assessed and described over a 5-year period. Experimental treatments in which some or all neighbors were removed were maintained and plant basal area was monitored throughout the experiment. In addition, above-ground biomass was collected over a 3-year period. Repeated-measures analysis of variance revealed no evidence of interactions between plants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号