首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   4篇
大气科学   3篇
地球物理   6篇
地质学   1篇
自然地理   1篇
  2020年   1篇
  2018年   1篇
  2016年   5篇
  2014年   2篇
  2008年   1篇
  2006年   1篇
排序方式: 共有11条查询结果,搜索用时 31 毫秒
1.
2.
Interaction between groundwater and surface water in watersheds has significant impacts on water management and water rights, nutrient loading from aquifers to streams, and in‐stream flow requirements for aquatic species. Of particular importance are the spatial patterns of these interactions. This study explores the spatio‐temporal patterns of groundwater discharge to a river system in a semi‐arid region, with methods applied to the Sprague River Watershed (4100 km2) within the Upper Klamath Basin in Oregon, USA. Patterns of groundwater–surface water interaction are explored throughout the watershed during the 1970–2003 time period using a coupled SWAT‐MODFLOW model tested against streamflow, groundwater level and field‐estimated reach‐specific groundwater discharge rates. Daily time steps and coupling are used, with groundwater discharge rates calculated for each model computational point along the stream. Model results also are averaged by month and by year to determine seasonal and decadal trends in groundwater discharge rates. Results show high spatial variability in groundwater discharge, with several locations showing no groundwater/surface water interaction. Average annual groundwater discharge is 20.5 m3/s, with maximum and minimum rates occurring in September–October and March–April, respectively. Annual average rates increase by approximately 0.02 m3/s per year over the 34‐year period, negligible compared with the average annual rate, although 70% of the stream network experiences an increase in groundwater discharge rate between 1970 and 2003. Results can assist with water management, identifying potential locations of heavy nutrient mass loading from the aquifer to streams and ecological assessment and planning focused on locations of high groundwater discharge. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
3.
4.
The performance of watershed models in simulating stream discharge depends on the adequate representation of important watershed processes. In snow‐dominated systems, snow, surface and subsurface hydrologic processes comprise a complex network of nonlinear interactions that influence the magnitude and timing of discharge. This study aims to identify critical processes and interactions that control discharge hydrographs in five major mountainous snow‐dominated river basins in Colorado, USA. A comprehensive watershed model (Soil and Water Assessment Tool) and a variance‐based global sensitivity analysis technique (Fourier Amplitude Sensitivity Test) were used in conjunction to identify critical models parameters and processes that they represent. Average monthly streamflow and streamflow root mean square error over a period of 20 years were used as two separate objective functions in this analysis. Examination of the sensitivity of monthly streamflow revealed the influence of parameters on flow volume, whereas the sensitivity of streamflow root mean square error also exposed the influence of parameters on the timing of the hydrographs. A stability analysis was performed to investigate the computational requirements for a robust sensitivity analysis. Results show that streamflow volume is mostly influenced by shallow subsurface processes, whereas interactions between groundwater and snow processes were the key in the timing of streamflows. A large majority of important parameters were common among all study watersheds, which underlies the prospect for regionalization of process‐based hydrologic modelling in headwater river basins in Colorado. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
5.
Three challenges compromise the utility of mathematical models of groundwater and other environmental systems: (1) a dizzying array of model analysis methods and metrics make it difficult to compare evaluations of model adequacy, sensitivity, and uncertainty; (2) the high computational demands of many popular model analysis methods (requiring 1000's, 10,000 s, or more model runs) make them difficult to apply to complex models; and (3) many models are plagued by unrealistic nonlinearities arising from the numerical model formulation and implementation. This study proposes a strategy to address these challenges through a careful combination of model analysis and implementation methods. In this strategy, computationally frugal model analysis methods (often requiring a few dozen parallelizable model runs) play a major role, and computationally demanding methods are used for problems where (relatively) inexpensive diagnostics suggest the frugal methods are unreliable. We also argue in favor of detecting and, where possible, eliminating unrealistic model nonlinearities—this increases the realism of the model itself and facilitates the application of frugal methods. Literature examples are used to demonstrate the use of frugal methods and associated diagnostics. We suggest that the strategy proposed in this paper would allow the environmental sciences community to achieve greater transparency and falsifiability of environmental models, and obtain greater scientific insight from ongoing and future modeling efforts.  相似文献   
6.
Representation of agricultural conservation practices with SWAT   总被引:5,自引:0,他引:5  
Results of modelling studies for the evaluation of water quality impacts of agricultural conservation practices depend heavily on the numerical procedure used to represent the practices. Herein, a method for the representation of several agricultural conservation practices with the Soil and Water Assessment Tool (SWAT) is developed and evaluated. The representation procedure entails identifying hydrologic and water quality processes that are affected by practice implementation, selecting SWAT parameters that represent the affected processes, performing a sensitivity analysis to ascertain the sensitivity of model outputs to selected parameters, adjusting the selected parameters based on the function of conservation practices, and verifying the reasonableness of the SWAT results. This representation procedure is demonstrated for a case study of a small agricultural watershed in Indiana in the Midwestern USA. The methods developed in the present work can be applied with other watershed models that employ similar underlying equations to represent hydrologic and water quality processes. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
7.
This study aims to assess watershed‐scale impacts of changing climate on sediment, phosphorus, nitrogen and pesticide (atrazine) fluxes over the 21st century at the watershed scale. In particular, changes in dissolved and particulate forms of water quality constituents in response to climate change are investigated. The hydrologic model Soil and Water Assessment Tool was calibrated and evaluated in a primarily agricultural watershed in the Midwestern United States to simulate hydrologic and water quality processes on a daily basis over the 2015–2099 time horizon. The model was then driven with 112 distinct statistically downscaled climate projections representing Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (IPCC SRES) low, moderate and high greenhouse gas emission scenarios. Projected hydrologic and water quality responses were categorized according to the three IPCC SRES emission scenarios for summarizing and synthesizing results over early‐century (2015–2034), mid‐century (2045–2064) and late‐century (2080–2099) assessment. Results revealed clear warming trends in the study area, whereas small increases in precipitation were predicted. Streamflow, sediment and total nutrient loads did not differ noticeably between assessment periods. However, the proportion of dissolved to total nutrients increased significantly from early‐century to late‐century periods. With the exception of total atrazine in the mid‐century period, predicted pollutant loads for a given assessment period did not differ between emission pathways for a given assessment period. Changes in pollutant fluxes showed pronounced monthly variability. The projected increase in readily available forms of nutrients has important implications for the ecological health of water systems and management of drinking water supplies. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
8.
The Soil and Water Assessment Tool (SWAT) was tested for prediction of stream flow and sediment yield in the Ankara basin, Turkey. The overall objective of this study was to evaluate the performance and applicability of the SWAT and generate a soil erosion map. Thirteen years of daily/monthly flow and monthly sediment data were used for calibration and validation. Model performance was evaluated using statistical measures to assess the applicability of the model in simulating stream flow and sediment yield during calibration (1989–1996) and validation (1982–1984) periods. Nash Sutcliffe efficiency (NSE), relative error (RE), and R² (coefficient of determination) for daily flow were computed as 0.61, ?0.55, and 0.78, respectively; and as 0.79, ?0.58, and 0.89 for monthly flow during the calibration. Statistical comparisons of sediment yield produced values for NSE, RE, and R² of 0.81, ?1.55, and 0.93, respectively, during the calibration. The resulting map suggests that significant portions of urbanized and highly cultivated areas in the vicinity of stream channels are particularly vulnerable to soil erosion. SWAT satisfactorily simulated hydrology and sediment yield and can be used as a tool in decision-making for water resources planning in a basin with similar characteristics.  相似文献   
9.
10.
Tile‐drain response to rainfall events is determined by unsaturated vertical flow to the water table, followed by horizontal saturated water movement. In this study, unsaturated vertical movement from the redistribution of water is modelled using a sharp‐front approximation, and the saturated horizontal flow is modelled by an approximate solution to the Boussinesq equation. The unsaturated flow component models the fast response that is associated with the presence of preferential flow paths. By convoluting the responses of the two components, a transfer function is developed that predicts tile‐drain response to unit amounts of infiltrated water. It is observed that the unsaturated flow component can be cast in a form that is linear in a power function of the infiltrated depth. Since the approach is process based, model parameter definitions are easily identified with soil properties at the field scale. Furthermore, it is demonstrated that the transfer function model parameters can be estimated from moment analysis. Using superposition, the transient tile‐drain response to arbitrary amounts of infiltrated water can be constructed. Comparison with data measured from the Water Quality Field Station show that this approach provides a promising method for generating tile‐drain response to rainfall events. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号