首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   237篇
  免费   14篇
  国内免费   1篇
测绘学   16篇
大气科学   14篇
地球物理   51篇
地质学   48篇
海洋学   14篇
天文学   84篇
综合类   1篇
自然地理   24篇
  2022年   2篇
  2021年   3篇
  2020年   4篇
  2019年   6篇
  2018年   15篇
  2017年   7篇
  2016年   11篇
  2015年   12篇
  2014年   14篇
  2013年   8篇
  2012年   7篇
  2011年   12篇
  2010年   9篇
  2009年   10篇
  2008年   12篇
  2007年   10篇
  2006年   20篇
  2005年   13篇
  2004年   16篇
  2003年   12篇
  2002年   9篇
  2001年   11篇
  2000年   9篇
  1999年   4篇
  1998年   6篇
  1997年   1篇
  1995年   2篇
  1994年   1篇
  1992年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1969年   1篇
排序方式: 共有252条查询结果,搜索用时 0 毫秒
1.
2.
3.
Stratigraphic, topographic, and ground‐penetrating radar data obtained from a ca. 1800‐year‐old embankment and adjacent ditch at the Hopewell Mound Group (Chillicothe, Ohio) are used to validate the archaeological application of a simple finite‐differences diffusion model employed frequently to assess geomorphic change in natural landscapes. Although diffusion models have been used to describe the topographic degradation of landforms in a variety of geomorphic terrains, the approach has not been applied to ancient earthworks in an archaeological context. The results of this study indicate that a variety of initial earthwork forms can result in the sinusoidal profile apparent on the current landscape. Using the model results to interpret the field data, we suggest that the initial embankment form was steeper and the adjacent ditch was deeper. As a result of natural degradation processes, the earthwork widened and flattened over time. These results have broad implications for any study aimed at: (1) assessing the function of original earthwork forms, (2) determining the formation processes of complicated stratigraphies or artifact assemblages, (3) estimating the time and labor investment required for construction, or (4) identifying the socio‐political structures necessary to build earthworks. © 2005 Wiley Periodicals, Inc.  相似文献   
4.
Mafic high-pressure granulite, eclogite and pyroxenite xenoliths have been collected from a Mesozoic volcaniclastic diatreme in Xinyang, near south margin of the Sino-Korean Craton (SKC). The high-pressure granulite xenoliths are mainly composed of fine-grained granoblasts of Grt+Cpx+Pl+Hbl±Kfs±Q±Ilm with relict porphyritic mineral assemblage of Grt+Cpx±Pl±Rt. PT estimation indicates that the granoblastic assemblage crystallized at 765–890 °C and 1.25–1.59 GPa, corresponding to crustal depths of ca. 41–52 km with a geotherm of 75–80 mW/m2. Calculated seismic velocities (Vp) of high-pressure granulites range from 7.04 to 7.56 km/s and densities (D) from 3.05 to 3.30 g/cm3. These high-pressure granulite xenoliths have different petrographic and geochemical features from the Archean mafic granulites. Elevated geotherm and petrographic evidence imply that the lithosphere of this craton was thermally disturbed in the Mesozoic prior to eruption of the host diatreme. These samples have sub-alkaline basaltic compositions, equivalent to olivine– and quartz–tholeiite. REE patterns are flat to variably LREE-enriched (LaN/YbN=0.98–9.47) without Eu anomaly (Eu/Eu*=0.95–1.11). They possess 48–127 ppm Ni and 2–20 ppm Nb with Nb/U and La/Nb ratios of 13–54 and 0.93–4.75, respectively, suggesting that these high-pressure granulites may be products of mantle-derived magma underplated and contaminated at the base of the lower crust. This study also implies that up to 10 km Mesozoic lowermost crust was delaminated prior to eruption of the Cenozoic basalts on the craton.  相似文献   
5.
Lithology, pollen, macrofossils, and stable carbon isotopes from an intermontane basin bog site in southern New Zealand provide a detailed late-glacial and early Holocene vegetation and climate record. Glacial retreat occurred before 17,000 cal yr B.P., and tundra-like grassland–shrubland occupied the basin shortly after. Between 16,500 and 14,600 cal yr B.P., a minor regional expansion of forest patches occurred in response to warming, but the basin remained in shrubland. Forest retreated between 14,600 and 13,600 cal yr B.P., at about the time of the Antarctic Cold Reversal. At 13,600 cal yr B.P., a steady progression from shrubland to tall podocarp forest began as the climate ameliorated. Tall, temperate podocarp trees replaced stress-tolerant shrubs and trees between 12,800 and 11,300 cal yr B.P., indicating sustained warming during the Younger Dryas Chronozone (YDC). Stable isotopes suggest increasing atmospheric humidity from 11,800 to 9300 cal yr B.P. Mild (annual temperatures at least 1°C higher than present), and moist conditions prevailed from 11,000 to 10,350 cal yr B.P. Cooler, more variable conditions followed, and podocarp forest was completely replaced by montane Nothofagus forest at around 7500 cal yr B.P. with the onset of the modern climate regime. The Cass Basin late-glacial climate record closely matches the Antarctic ice core records and is in approximate antiphase with the North Atlantic.  相似文献   
6.
We have identified two new galaxies with gas counter-rotation (NGC 1596 and 3203) and have confirmed similar behaviour in another one (NGC 128), this using results from separate studies of the ionized-gas and stellar kinematics of a well-defined sample of 30 edge-on disc galaxies. Gas counter-rotators thus represent 10 ± 5 per cent of our sample, but the fraction climbs to 21 ± 11 per cent when only lenticular (S0) galaxies are considered and to 27 ± 13 per cent for S0 galaxies with detected ionized gas only. Those fractions are consistent with but slightly higher than previous studies. A compilation from well-defined studies of S0 galaxies in the literature yields fractions of 15 ± 4 and 23 ± 5 per cent, respectively. Although mainly based on circumstantial evidence, we argue that the counter-rotating gas originates primarily from minor mergers and tidally induced transfer of material from nearby objects. Assuming isotropic accretion, twice those fractions of objects must have undergone similar processes, underlining the importance of (minor) accretion for galaxy evolution. Applications of gas counter-rotators to barred galaxy dynamics are also discussed.  相似文献   
7.
8.
According to Eurocode 8, the seismic design of flat‐bottom circular silos containing grain‐like material is based on a rough estimate of the inertial force imposed on the structure by the ensiled content during an earthquake: 80% of the mass of the content multiplied by the peak ground acceleration. A recent analytical consideration of the horizontal shear force mobilised within the ensiled material during an earthquake proposed by some of the authors has resulted in a radically reduced estimate of this load suggesting that, in practice, the effective mass of the content is significantly less than that specified. This paper describes a series of laboratory tests that featured shaking table and a silo model, which were conducted in order to obtain some experimental data to verify the proposed theoretical formulations and to compare with the established code provisions. Several tests have been performed with different heights of ensiled material – about 0.5 mm diameter Ballotini glass – and different magnitudes of grain–wall friction. The results indicate that in all cases, the effective mass is indeed lower than the Eurocode specification, suggesting that the specification is overly conservative, and that the wall–grain friction coefficient strongly affects the overturning moment at the silo base. At peak ground accelerations up to around 0.35 g, the proposed analytical formulation provides an improved estimate of the inertial force imposed on such structures by their contents. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
9.
10.
Large‐scale testing and qualification of structural systems and their components is crucial for the development of earthquake engineering knowledge and practice. However, laboratory capacity is often limited when attempting larger experiments due to the sheer size of the structures involved. To overcome traditional laboratory capacity limitations, we present a new earthquake engineering testing method: real‐time distributed hybrid testing. Extending current approaches, the technique enables geographically distributed scientific equipment including controllers, dynamic actuators and sensors to be coupled across the Internet in real‐time. As a result, hybrid structural emulations consisting of physical and numerical substructures need no longer be limited to a single laboratory. Larger experiments may distribute substructures across laboratories located in different cities whilst maintaining correct dynamic coupling, required to accurately capture physical rate effects. The various aspects of the distributed testing environment have been considered. In particular, to ensure accurate control across an environment not designed for real‐time testing, new higher level control protocols are introduced acting over an optimised communication system. New large time‐step prediction algorithms are used, capable of overcoming both local actuation and distributed system delays. An overview of the architecture and algorithms developed is presented together with results demonstrating a number of current capabilities. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号