首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  国内免费   1篇
地质学   4篇
  2014年   1篇
  2001年   2篇
  1998年   1篇
排序方式: 共有4条查询结果,搜索用时 140 毫秒
1
1.
Transmission electron microscopy applied to fluid inclusion investigations   总被引:8,自引:0,他引:8  
The transmission electron microscope (TEM) allows a detailed characterization of textural and chemical features of fluid inclusions (shape, inner compositions and inner textures), at a resolution higher than that attainable with an optical microscope (OM). TEM investigation indicates that most fluid inclusions appear as perfectly euhedral negative crystals, with variable shape (from prismatic to equant) and size (typically from <0.02 to 0.15 μm). Inner texture (fluid phase/melt distribution) and composition are variable as well. Different kinds of negative crystals may coexist in the same trail of inclusions, possibly indicating locally variable trapping conditions.

A critical feature, revealed by TEM, is that inclusions are often connected to structural defects (in particular, to dislocation arrays), which are undetected by optical microscopy. The identification of these hidden nanostructures should be taken into account for the correct petrological interpretation of microthermometric results, particularly when controversial data have been obtained. In fact, these nanostructures may represent a possible path for fluid phase leakage, thus modifying the original composition and/or density of the inclusions.  相似文献   

2.
Silicate-melt inclusions in magmatic rocks: applications to petrology   总被引:20,自引:0,他引:20  
Maria-Luce Frezzotti   《Lithos》2001,55(1-4):273-299
Silicate-melt inclusions in igneous rocks provide important information on the composition and evolution of magmatic systems. Such inclusions represent accidentally trapped silicate melt (±immiscible H2O and/or CO2 fluids) that allow one to follow the evolution of magmas through snapshots, corresponding to specific evolution steps. This information is available on condition that they remained isolated from the enclosing magma after their entrapment. The following steps of investigation are discussed: (a) detailed petrographic studies to characterise silicate-melt inclusion primary characters and posttrapping evolution, including melt crystallisation; (b) high temperature studies to rehomogenise the inclusion content and select chemically representative inclusions: chemical compositions should be compared to relevant phase diagrams.

Silicate-melt inclusion studies allow us to concentrate on specific topics; inclusion studies in early crystallising phases allow the characterisation of primary magmas, while in more differentiated rocks, they unravel the subsequent chemical evolution. The distribution of volatile species (i.e., H2O, CO2, S, Cl) in inclusion glass can provide information on the degassing processes and on recycling of subducted material. In intrusive rocks, silicate melt inclusions may preserve direct evidence of magmatic stage evolution (e.g., immiscibility phenomena). Melt inclusions in mantle xenoliths indicate that high-silica melts can coexist with mantle peridotites and give information on the presence of carbonate melt within the upper mantle. Thus, combining silicate-melt inclusion data with conventional petrological and geochemical information and experimental petrology can increase our ability to model magmatic processes.  相似文献   

3.
This paper reviews the origin and evolution of fluid inclusions in ultramafic xenoliths,providing a framework for interpreting the chemistry of mantle fluids in the different geodynamic settings.Fluid inclusion data show that in the shallow mantle,at depths below about 100 km,the dominant fluid phase is CO_2±brines,changing to alkali-,carbonate-rich(silicate) melts at higher pressures.Major solutes in aqueous fluids are chlorides,silica and alkalis(saline brines;5-50 wt.%NaCl eq.).Fluid inclusions in peridotites record CO_2 fluxing from reacting metasomatic carbonate-rich melts at high pressures,and suggest significant upper-mantle carbon outgassing over time.Mantle-derived CO_2(±brines) may eventually reach upper-crustal levels,including the atmosphere,independently from,and additionally to magma degassing in active volcanoes.  相似文献   
4.
Quartz veins syntectonic to distinct folding events in metasediments from the Voltri Group (Ligurian Alps) were studied in order to compare fluid and structural evolution. Studied veins (VS1, VS2, VS3) pertain to three distinct generations of folds (F1, F2, F3) that formed during the retrograde metamorphic evolution. Two types of fluids characterize the different generations of veins and are represented essentially by aqueo-carbonic mixtures of moderate salinity with decreasing densities (1.01–0.41 g/cm3). The chemical evolution is characterised by a progressive decrease of H2O, from early fluids associated with opening of VS1 and VS2 (XCO2≈0.08) to fluids related to VS3 formation (XCO2≈0.3). The close match between the fluids in VS1 and VS2 suggests that the development of two superimposed systems of folds (F1 and F2 folds) occurs under very similar PT conditions, during a progressive and continuous deformational event at glaucophanic and/or barroisitic metamorphic grade. A different evolution is outlined for the formation of VS3 during low greenschist grade. Successive isochores allow us to define a retrograde decompression path for the Voltri Group. Present results indicate that fluid inclusions are powerful markers to constrain the PTt conditions of different folding events.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号