首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
地质学   1篇
  2022年   1篇
排序方式: 共有1条查询结果,搜索用时 15 毫秒
1
1.
Liu  Hongwei  Maghoul  Pooneh  Mantelet  Guillaume  Shalaby  Ahmed 《Acta Geotechnica》2022,17(8):3515-3534

The non-destructive testing (NDT) plays a crucial role in geotechnical engineering and geophysical applications, especially in the design of earthquake-resistant foundations, geotechnical field investigation, and material characterization and detection of underground anomaly. Currently, the existing signal interpretation methods in NDT measurements still predominantly rely on empirical relations or subjective judgements. In this paper, we present the GeoNDT software, which is developed to provide an advanced physics-based signal interpretation method for NDT characterization of multiphase geomaterials. GeoNDT is able to model the propagation of stress waves and dispersion relations in dry (elastodynamic), saturated (two-phase poroelastodynamic), and three-phase frozen (multiphase poroelastodynamic) geomaterials using the meshless spectral element method. GeoNDT is flexible, general-purpose, and can be used seamlessly for advanced signal interpretation in geophysical laboratory testing including the bender element and ultrasonic pulse velocity tests, characterization of complex multiphase geomaterials, and in situ shallow seismic geophysics including the falling weight deflectometer and multichannel analysis of surface waves tests. The advanced physics-based signal interpretation feature of GeoNDT allows the quantitative characterization of geophysical and geomechanical properties of geomaterials and multilayered geosystems independently without making any simplified assumptions as common in the current practice.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号