首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
地球物理   2篇
地质学   6篇
  2023年   1篇
  2006年   1篇
  2005年   3篇
  2003年   2篇
  2002年   1篇
排序方式: 共有8条查询结果,搜索用时 31 毫秒
1
1.
We present a new three-dimensional SV-wave velocity model for the upper mantle beneath South America and the surrounding oceans, built from the waveform inversion of 5850 Rayleigh wave seismograms. The dense path coverage and the use of higher modes to supplement the fundamental mode of surface waves allow us to constrain seismic heterogeneities with horizontal wavelengths of a few hundred kilometres in the uppermost 400 km of the mantle.The large scale features of our tomographic model confirm previous results from global and regional tomographic studies (e.g. the depth extent of the high velocity cratonic roots down to about 200–250 km).Several new features are highlighted in our model. Down to 100 km depth, the high velocity lid beneath the Amazonian craton is separated in two parts associated with the Guyana and Guapore shields, suggesting that the rifting episode responsible for the formation of the Amazon basin has involved a significant part of the lithosphere. Along the Andean subduction belt, the structure of the high velocity anomaly associated with the sudbduction of the Nazca plate beneath the South American plate reflects the along-strike variation in dip of the subducting plate. Slow velocities are observed down to about 100 km and 150 km at the intersection of the Carnegie and Chile ridges with the continent and are likely to represent the thermal anomalies associated with the subducted ridges. These lowered velocities might correspond to zones of weakness in the subducted plate and may have led to the formation of “slab windows” developed through unzipping of the subducted ridges; these windows might accommodate a transfer of asthenospheric mantle from the Pacific to the Atlantic ocean. From 150 to 250 km depth, the subducting Nazca plate is associated with high seismic velocities between 5°S and 37°S. We find high seismic velocities beneath the Paraná basin down to about 200 km depth, underlain by a low velocity anomaly in the depth range 200–400 km located beneath the Ponta Grossa arc at the southern tip of the basin. This high velocity anomaly is located southward of a narrow S-wave low velocity structure observed between 200 and 500–600 km depth in body wave studies, but irresolvable with our long period datasets. Both anomalies point to a model in which several, possibly diachronous, plumes have risen to the surface to generate the Paraná large igneous province (LIP).  相似文献   
2.
The oxidation rates of natural realgar and amorphous synthetic AsS by dissolved oxygen were evaluated using mixed flow reactors at pH 7.2 to 8.8 and dissolved oxygen contents of 5.9 to 16.5 ppm over a temperature range of 25 to 40°C. The ratios of As/S are stoichiometric for all amorphous AsS oxidation experiments except for two experiments conducted at pH ∼8.8. In these experiments, stoichiometric ratios of As/S were only observed in the early stages of AsS (am) oxidation whereas lower As/S ratios were observed during steady state. For realgar oxidation experiments, the As/S ratio is less than the stoichiometric ratio of realgar, ranging between 0.61 and 0.71. This nonstoichiometric release of As and S to solution indicates that realgar oxidation is more selective for S after the rates of oxidation become constant. All measured oxidation rates at 25°C can be described within experimental uncertainties as follows: Table 1
Rate ExpressionActivation Energy (kJ/mol)
R(Realgar/As) = 10−9.63(±0.41)[DO]0.51(±0.08)[H+]−0.28(±0.05)64.2 ± 9.8
R(Realgar/S) = 10−9.74(±0.35)[DO]0.54(±0.05)[H+]−0.31(±0.04)62.2 ± 9.0
R(AsS(am)) = 10−13.65(±0.82)[DO]0.92(±0.08)[H+]−1.09(±0.10)124 ± 18.8
Full-size table
  相似文献   
3.
A sulfate-reducing bacterial (SRB) enrichment, from the Driefontein Consolidated Gold Mine, Witwatersrand Basin, Republic of South Africa, was able to destabilize gold(I)-thiosulfate complex and precipitate elemental gold. The precipitation of gold was observed in the presence of active (live) SRB due to the formation and release of hydrogen sulfide as an end-product of metabolism, and occurred by three possible mechanisms involving iron sulfide, localized reducing conditions, and metabolism. The presence of biogenic iron sulfide caused significant removal of gold from solutions by adsorption and reduction processes on the iron sulfide surfaces. The presence of gold nanoparticles within and immediately surrounding the bacterial cell envelope highlights the presence of localized reducing conditions produced by the bacterial electron transport chain via energy generating reactions within the cell. Specifically, the decrease in redox conditions caused by the release of hydrogen sulfide from the bacterial cells destabilized the solutions. The presence of gold as nanoparticles (<10 nm) inside a sub-population of SRB suggests that the reduction of gold was a part of metabolic process. In late stationary phase or death phase, gold nanoparticles that were initially precipitated inside the bacterial cells, were released from the cells and deposited in the bulk solution as addition of gold nanoparticles that already precipitated in the solution. Ultimately, the formation of micrometer-scale sub-octahedral and octahedral gold and spherical aggregates containing octahedral gold was observed.  相似文献   
4.
An Acidithiobacillus thiooxidans spp., isolated from the Driefontein Consolidated Gold Mine, Witwatersrand Basin, Republic of South Africa was able to precipitate gold from Au(S2O3)23− in the presence of up to 0.26 mM gold. In chemical control experiments and with the presence of dead bacteria, gold was not precipitated under similar experimental conditions and duration. During growth, the pH of the culture medium decreased from pH 5.4 to 1.9, while the Eh increased from 0.3 to between 0.5 to 0.6 V within a period of 75 days. In the active (live) bacterial culture systems, acid production enhanced thiosulfate disproportionation, after which the elemental sulfur and any other intermediate sulfur species were oxidized completely to sulfate. The gold, Au(S2O3)23−, was stable in the bacterial systems until sulfur oxidation was complete; then the bacteria precipitated gold from Au(S2O3)23−. The bacterial systems (0.02-0.26 mM gold) precipitated 87 to 100% of the gold under diurnal light exposure, while only 11 to 69% of the gold was precipitated in the dark. The presence of gold (≥0.08 mM) reduced bacterial growth, disrupted cell division causing cell elongation, and was ultimately toxic to this bacterium, killing the cultures. The gold was precipitated inside the bacterial cells as fine-grained colloids ranging between 5 and 10 nm in diameter and in the bulk fluid phase as crystalline micrometer-scale gold. Observations using transmission electron microscopy revealed that the gold was deposited throughout the cell; however, it was concentrated in the cell envelope, especially along the cytoplasmic membrane, suggesting that gold precipitation was likely enhanced via electron transport processes associated with energy generation. Seven months after population growth had stopped, the gold had formed coiled or wire gold, irregular and rounded structures with an approximate size ranging from 0.5 to 5 μm, and crystalline octahedral gold.  相似文献   
5.
Acid mine drainage (AMD) is one of the most significant environmental challenges facing the mining industry worldwide. For this reason, many methods for AMD treatment are developed, being wetlands a good option for metal elements removal from these mining effluents. The efficiency of Peruvian native plants such as Schoenoplectus californicus (S. californicus) to remove metal elements in effluents through artificial wetlands is studied. Batch removal tests are carried out with different effluents containing copper, zinc, lead, and iron. For iron-metal binary effluents, copper, zinc, and lead are removed by 82%, 75%, and 88%; while in the effluent containing all metals, the removal rate is 90% and 92% for copper and lead, respectively. According to the preliminary results, it is concluded that iron interferes more in the removal of zinc and lead than in copper from binary effluents. The use of S. californicus turns out to be an efficient, attractive, and economical alternative for the treatment of effluents contaminated with copper, zinc, lead, and iron.  相似文献   
6.
Arsenic sulfide (AsS (am), As2S3 (am), orpiment, and realgar) oxidation rates increase with increasing pH values. The rates of arsenic sulfide oxidation at higher pH values relative to those at pH∼2 are in the range of 26-4478, 3-17, 8-182, and 4-10 times for As2S3 (am), orpiment, AsS (am), and realgar, respectively.Numerical simulations of orpiment and realgar oxidation kinetics were conducted using the geochemical reaction path code EQ3/6 to evaluate the effects of variable DO concentrations and mineral reactivity factors on water chemistry evolution during orpiment and realgar oxidation. The results show that total As concentrations increase by ∼1.14 to 13 times and that pH values decrease by ∼0.6 to 4.2 U over a range of mineral reactivity factors from 1% to 50% after 2000 days (5.5 yr). The As release from orpiment and realgar oxidation exceeds the current U.S. National Drinking Water Standard (0.05 ppm) approximately in 200-300 days at the lowest initial dissolved oxygen concentration (3 ppm) and a reactivity factor of 1%. The results of simulations of orpiment oxidation in the presence of albite and calcite show that calcite can act as an effective buffer to the acid water produced from orpiment oxidation within relatively short periods (days/months), but the release of As continues to increase.Pyrite oxidation rates are faster than orpiment and realgar from pH 2.3 to 8; however, pyrite oxidation rates are slower than As2S3 (am) and AsS (am) at pH 8. The activation energies of arsenic sulfide oxidation range from 16 to 124 kJ/mol at pH∼8 and temperature 25 to 40°C, and pyrite activation energies are ∼52 to 88 kJ/mol, depending on pH and temperature range. The magnitude of activation energies for both pyrite and arsenic sulfide solids indicates that the oxidation of these minerals is dominated by surface reactions, except for As2S3 (am). Low activation energies of As2S3 (am) indicate that diffusion may be rate controlling.Limestone is commonly mixed with sulfide minerals in a mining environment to prevent acid water formation. However, the oxidation rates of arsenic sulfides increase as solution pH rises and result in a greater release of As. Furthermore, the lifetimes of carbonate minerals (i.e., calcite, aragonite, and dolomite) are much shorter than those of arsenic sulfide and silicate minerals. Thus, within a geologic frame time, carbonate minerals may not be present to act as a pH buffer for acid mine waters. Additionally, the presence of silicate minerals such as pyroxenes (wollastonite, jadeite, and spodumene) and Ca-feldspars (labradorite, anorthite, and nepheline) may not be important for buffering acid solutions because these minerals dissolve faster than and have shorter lifetimes than sulfide minerals. However, other silicate minerals such as Na and K-feldspars (albite, sanidine, and microcline), quartz, pyroxenes (augite, enstatite, diopsite, and MnSiO3) that have much longer lifetimes than arsenic sulfide minerals may be present in a system. The results of our modeling of arsenic sulfide mineral oxidation show that these minerals potentially can release significant concentrations of dissolved As to natural waters, and the factors and mechanisms involved in arsenic sulfide oxidation warrant further study.  相似文献   
7.
8.
Partial mortality and fission on colonies of four common massive coral species were examined at sites differing in their exposure to river sediments in St. Lucia, West Indies. Rates of partial mortality were higher close to the river mouths, where more sediments were deposited, than away from the rivers in two coral species. Frequency of fission showed no significant trend. The percent change in coral cover on reefs from 1995 to 1998 was negatively related to the rate of partial mortality estimated in 1998 in all species. This suggests that partial mortality rates could reflect longer-term temporal changes in coral communities. Similar conclusions could also be reached using a less precise measure and simply recording partial mortality on colonies as <50% and >/=50% dead tissue. We conclude that partial mortality in some species of massive reef corals, expressed as the amount of dead tissue per colony, could provide a rapid and effective means of detecting sediment stress on coral reefs.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号