首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
地质学   4篇
  1996年   1篇
  1985年   1篇
  1980年   1篇
  1965年   1篇
排序方式: 共有4条查询结果,搜索用时 125 毫秒
1
1.
Most of the flows in the Palaeocene lava pile remnant of Skyeare members of the Skye Main Lava Series (SMLS), comprisingtransitional basalts and two associated suites of evolved lavas.The first suite evolves through Fe-rich hawaiites and mugearitesto benmoreites, and the second suite evolves through Fe-poorintermediates to trachytes. Ca-rich, alkali-poor olivine tholeiites(the Preshal Mhor magma type) occur as sparse flows in the stratigraphicallyhighest parts of the lava pile remnant and are abundant in thedyke swarm transecting it. Initial 87Sr/86Sr ratios rangingfrom 0.70308 to 0.70571 in 45 SMLS samples show no significantcorrelation with degree of zeolitization (H2O+), silica saturation,or 87Rb/86Sr. A moderately good negative correlation with totalSr confirms published Pb-isotope evidence of interaction withancient, sialic crust. Details of the (87Sr/86Sr)l versus Srpattern are consistent with previous hypotheses that the SMLSbasalt-benmoreite suite evolved at a depth near the Moho, whilstthe low-Fe trend to trachyte resulted from near-surface basaltfractionation. (87Sr/86Sr)l values ranging from 0.70307 to 0.70621 for PreshalMhor basalts show a strong positive correlation with total Sr,consistent with a model of extensive fractionation within theupper crust of a mantle-derived low 87Sr/86Sr-low Sr magma,which became progressively contaminated with comparatively radiogeniccrustal Sr. The lowest measured (87Sr/86Sr)l values of 0.70307and 0.70308, for a Preshal Mhor basalt and for an SMLS basaltrespectively, are consistent with the hypothesis that thesetwo magma types were produced by successive phases of partialmelting from a single volume of upper mantle. (87Sr/86Sr)l values for additional miscellaneous basaltic lavas,dykes and major intrusives from Skye and from nearby Isle ofMull exhibit considerable variability within the range 0.7038to 0.7072, whilst three basaltic dykes from Northern Englandare in the range 0.7089 to 0.7123. The latter values overlapwith published (87Sr/86Sr)l values for some of the granitesin the Tertiary Province of northwest Scotland and indirectlyremove objections based on Sr-isotopic arguments to the genesisof the granites by fractionation of basalt contaminated withcrustal Sr, but neither prove this nor disprove large-scalecrustal partial fusion.  相似文献   
2.
Augustine Volcano, a Quaternary volcanic centre of the easternAleutian Arc, produces predominantly andesites and dacites oflow- to medium-K calc-alkaline composition. Mineralogical andmajor element characteristics of representative lavas suggestthat magmatic evolution has been influenced by both crystalfractionation and magma-mixing processes. However, incompatibletrace element variations (e.g. K/Rb) indicate that these evolvedlavas have been contaminated by the mafic arc crust of the underlyingTalkeetna accreted terrane. The limited range of isotope compositionsalso supports the assimilation of non-radiogenic mafic crust(e.g. 87Sr/86Sr = 0.7032–0.7034; 143Nd/144 Nd = 0.51301–0.5130).In addition, Pb-isotope compositions parallel the North Pacificmean oceanic trend (206Pb/204 Pb = 18.3–18.8; 207Pb/204Pb= 15.5–15.6; 208Pb/204Pb = 38.2–38.3) and do notrequire a subducted sediment component in the source. Relativelyhigh (Ba/La) N (0.79–18.10) and B/Be (14.5) ratios do,however, suggest a metasomatic fluid component derived fromthe dehydration of the subducting plate. The thickened continental crust (35 km) of the eastern AleutianArc prevents the ascent of basaltic melts, which fractionateand assimilate at various depths to produce andesitic magmas.These andesites evolve towards more silicic compositions byfractional crystallization. The absence of evidence for a largehigh-level crustal magma chamber implies that the magmatic systembeneath the volcano is young and at an immature stage of evolution. KEY WORDS: Augustine Volcano; Aleutians; assimilation; melasomatism; geochemistry *Corresponding author. Present address: Department of Geology and Geophysics, University of New Orleans, New Orleans, LA 70148, USA  相似文献   
3.
The isotopic abundance of strontium has been measured in representativerock-types from the Tertiary igneous suite in the Isle of Skye,north-west Scotland. The isotopic abundance of Sr87, expressedas the Sr87/Sr86 ratio, for twelve basalts, dolerites, gabbros,and peridotites is 0.7058?0.0010. On the other hand, the averageinitial Sr87/Sr86 ratio for one granite from the Eastern RedhillsComplex and for three granites from the Western Redhills Complexis 0.7124?0.0015. The three principal members of the marscoitesuite of the Western Redhills Centre, namely, ferrodiorite,porphyritic felsite, and marscoite, also have significantlyhigher initial Sr87/Sr86 ratios than the basaltic rocks. Itis concluded that the rocks with high initial ratios were derivedfrom a source with significantly higher Rb/Sr ratio than thatof the basaltic rocks. The hypothesis which is most in accordwith the isotopic evidence is that the granitic rocks and themarscoite suite were produced by partial melting of ancientLewisian rocks, which form the underlying basement at no greatdepth in this area. Rb—Sr (and K-Ar) age determinations were carried out onsome representative rocks from the Eastern and Western RedhillsCentres. It was not possible to establish a significant agedifference between any of the rock units from either Centres.The mean age is 54?3 m.y. and suggests that intrusion of thegranitic rocks of Skye occurred during a relatively short periodof time within the Lower or Middle Eocene peroid.  相似文献   
4.
The ages of rocks and minerals can be determined by measuring the accumulation of the products of radioactive decay within them. The results provide a time–scale for the Earth and for the major geological events which have shaped the Earth's continental crust since it first started to separate from the mantle at least 3700 million years ago. The Earth itself is about 4600 million years old.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号