首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   0篇
地质学   23篇
  2021年   1篇
  2019年   1篇
  2017年   3篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2010年   4篇
  2009年   3篇
  2008年   3篇
  2007年   4篇
  2006年   1篇
排序方式: 共有23条查询结果,搜索用时 31 毫秒
1.
This report presents data on the geological structure and location of the orthopyroxenite inclusion in gneissic enderbites of the Bug granulite–gneiss domain. Three stages of orthopyroxenite formation were identified on the basis of studies of the mineral composition along with the U–Pb and Lu–Hf isotope systems of zircons.  相似文献   
2.
This paper presents the results of a complex study (morphology of grains, internal texture in cathodoluminescence and backscattered electrons, microprobe analysis, Lu–Hf data) of five groups (generations) of zircon crystals differing in age and separated from the same granulite sample pertaining to the Bug River Complex of the Ukrainian Shield. The data show that the oldest zircon crystals of the first group (3.74 Ga in age) are xenogenic and initially crystallized from a granitic melt; zircon of the second group (3.66 Ga) formed from a mafic melt contaminated by felsic country rocks. The third group (3.59 Ga) is represented by zircons that formed about 100 Ma later than the second group under conditions of granulite-facies metamorphism and with the participation of fluid-saturated anatectic melt. Two Paleoproterozoic zircon groups (~2.5 and 2.1 Ga) also formed under granulite-facies conditions; to a certain extent, their structure and composition were controlled by fluid. The geochemistry of all zircon generations provides evidence for their crystallization in the continental crust, but from the sources differing in the contribution of mantle-derived material and in oxygen fugacity.  相似文献   
3.
4.
5.
The geological setting, geochemistry, and Nd isotopic systematics of tonalite-trondhjemite-granodiortite (TTG) series in ancient cratons are considered. It is shown that the TTG series were formed from ∼4.2 to 2.6 Ga ago in the oldest continental cores; many TTG series do not reveal chronological links to greenstone belts. This follows from the evolution of the Slave Craton in the Canadian Shield, the Vodlozero Craton in the Baltic Shield, and the Pilbara and Yilgarn cratons in the Australian Shield, where greenstone associations postdated TTG series. As has been established at the Baltic Shield, the primary melts of the Mesoarchean TTG associations were formed at a shallower depth (P < 15 kbar) compared to the Neoarchean TTG, likely, due to the increasing thickness of the continental crust beneath the Baltic Shield over time.  相似文献   
6.
The Archean provinces and lithotectonic complexes of the Baltic (Fennoscandian) Shield are considered. The supracrustal complexes are classified by age: <3.2, 3.10–2.90, 2.90–2.82, 2.82–2.75, and 2.75–2.65 Ga. The data on Archean granitoid complexes and metamorphic events are mentioned briefly, whereas the recently found fragments of the Archean ophiolitic and eclogite-bearing associations are discussed in more detail. The Paleoarchean rocks and sporadic detrital grains of Paleoarchean zircons have been found in the Baltic Shield; however, the relatively large fragments of the continental crust likely began to form only in the Mesoarchean (3.2–3.1 Ga ago), when the first microcontinents, e.g., Vodlozero and Iisalmi, were created. The main body of the continental crust was formed 2.90–2.65 Ga ago. The available information on the Paleoarchean complexes of the Baltic Shield is thus far too scanty for judgment on their formation conditions. The geologic, petrologic, isotopic, and geochronological data on the Meso-and Neoarchean lithotectonic complexes testify to their formation in the geodynamic settings comparable with those known in Phanerozoic: subduction-related (ensialic and ensimatic), collisional, spreading-related, continental rifting, and the setting related to mantle plumes.  相似文献   
7.
8.
The structure and composition of accessory zircons from the tonalites of the Vyg River, southeastern Karelia, were investigated. Their local U-Pb SHRIMP dating yielded ages between 3127±15 and 3146±25 Ma. It was shown that the zircons consist of three zones, a central part containing solid and melt inclusions and zoned magmatic and metasomatic shells. The obtained ages correspond to the magmatic and metasomatic stages of zircon crystallization. In general, the zircons have elevated contents of LREE (up to 867 ppm La), which were mainly accumulated in the outer metasomatic shell. Apatite and CO2 inclusions are widespread. Orthoclase, orthopyroxene, ilmenite, galena, quartz, and bastnaesite were identified in a solid inclusion in one zircon core using a CAMSCAN MX 2500 electron microscope. The presence of bastnaesite accentuates the relation of LREE with a CO2-rich fluid. It was shown that REE content is not correlated with U, Th, and U/Th ratio.  相似文献   
9.
Geochemical, isotopic-geochemical, and geochronological information was obtained on magmatic rocks from the Saltychan anticlinorium in the Azov domain of the Ukrainian Shield. The rocks affiliate with the calc-alkaline series and a high-Mg series. The rocks of these series notably differ in concentrations of trace elements and REE and range from gabbro to granodiorite-quartz diorite in composition. The NORDSIM ionprobe U-Pb zircons ages of rocks belonging to the Obitochnen Complex and having both elevated and normal mg# correspond to 2908–2940 Ma. The Osipenkovskaya intrusion has an age of 2855 ± 19 Ma. The most alkaline North Obitochnen intrusion was emplaced in the Proterozoic, at 2074 ± 11 Ma. The age of the amphibolite metamorphism of the host gneisses is reliably dated at 3120–3000 Ma. The model Sm-Nd ages of the intrusive rocks do not exceed 3150 Ma. According to geochemical evidence, the parental melts of the magmatic rocks were derived from mantle domains variably enriched in lithophile elements. The results obtained by studying the Sm-Nd isotopic system corroborate the conclusion drawn from geochemical evidence that most of the melts were derived from the mildly enriched mantle, practically without involvement of ancient crustal material. The mantle became enriched in LREE at approximately 3000 Ma, which corresponds to the age of metamorphism of the supracrustal rocks. This process was separated from the derivation of the melts by a time span of 70–80 Ma. The relative age of the intrusive rocks and their variable composition can be most adequately explained by a contribution of heat and material from a plume to the derivation of the parental melts of these rocks.  相似文献   
10.
Paleoarchean granulite-facies metasedimentary rocks (quartzites, garnet quartzites, garnet-pyroxene gneisses, pyroxene-magnetite and magnetite quartzites) attributed to the Dniester-Bug Group of the Ukrainian Shield were studied. On the basis of geochemical data, including REE, the primary composition of these rocks was reconstructed as association of Fe-rich sandstones and sublitharenites, Fe-shales, and BIFs. This sedimentary association is similar to the rocks of other ancient greenstone belts and ascribed to the Algama-type iron formation. The sum of Al2O3, CaO, Na2O, and TiO2, high Zr contents (>100 ppm in quartzites), and the presence of detrital zircon grains of different ages are consistent with the terrigenous nature of sedimentary rocks. The Sm/Nd, Ti/Zr, Sc/Zr, and Ni/Zr ratios indicate the predominance of granitoid rocks in the source areas. The elevated Cr contents suggest that, in addition to granitoids, the source area contained ultramafic rocks. Geochemical characteristics, such as Fe/Mn ratio, low REE contents, and variations of REE versus the sum of Ni, Co, and Cu testify that sedimentation occurred under shallow-water conditions on the continent or its slope, similarly as the formation of ancient (3.5–3.2 Ga) basalt-komatiitic series intercalated with sedimentary rocks in the Pilbara Craton. The age of supracrustal rocks of the Dniester-Bug Group was constrained within the time interval of 3.4–3.2 Ga on the basis of U-Pb zircon dating and determination of Nd isotope composition. The DM model age of quartzites varies from 3.37 to 3.5 Ga. Sedimentary rocks together with volcanic rocks represent the oldest supracrustal association of the East European Platform.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号