首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   142篇
  免费   6篇
  国内免费   3篇
测绘学   8篇
大气科学   19篇
地球物理   42篇
地质学   24篇
海洋学   47篇
天文学   3篇
综合类   2篇
自然地理   6篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   5篇
  2019年   3篇
  2018年   7篇
  2017年   4篇
  2016年   6篇
  2015年   4篇
  2014年   10篇
  2013年   13篇
  2012年   4篇
  2011年   14篇
  2010年   15篇
  2009年   9篇
  2008年   9篇
  2007年   8篇
  2006年   12篇
  2005年   4篇
  2004年   4篇
  2003年   1篇
  2002年   4篇
  2001年   1篇
  2000年   4篇
  1999年   1篇
  1996年   3篇
  1995年   1篇
  1992年   1篇
排序方式: 共有151条查询结果,搜索用时 0 毫秒
1.
In this study, winter precipitation variability associated with the El Niño-Southern Oscillation (ENSO) over the Korean Peninsula was investigated using a 5-pentad running mean data because significant correlation pattern cannot be revealed using seasonal-mean data. It was found a considerably significant positive correlation between Niño3 sea-surface temperature and precipitation during early winter (from Mid-November to early-December), when the correlation coefficient is close to 0.8 in early-December; the correlation is distinctively weakened during late winter. It is demonstrated that such sudden intraseasonal change in relation to ENSO is associated with the presence of anticyclonic flow over the Kuroshio extension region (Kuroshio anticyclone). In early winter, there is strong southerly wind over the Korean Peninsula, which is induced by the Philippine Sea anticyclone and Kuroshio anticyclone. However, in January, although the Philippine Sea anticyclone develops further, the Kuroshio anticyclone suddenly disappears; as a result, the impact of ENSO is considerably weakened over the Korean Peninsula. These results indicate that the Kuroshio anticyclone during El Niño peak phase plays a critical role by strongly affecting Northeast Asia climate, including the Korean Peninsula. In addition, it is also found that there are distinctive interdecadal changes of the relationship between ENSO and precipitation over the Korean Peninsula. In particular, the strong correlation in early winter is clearer in the recent 30 years than that in the previous period of 1950–1979.  相似文献   
2.
Jaehoon Yoo   《Ocean Engineering》2007,34(8-9):1089-1095
A surface panel method treating a boundary-value problem of the Dirichlet type with the free surface is presented to design a three-dimensional body corresponding to a prescribed pressure distribution. The free surface boundary condition is linearized with respect to the oncoming flow, and computed by four-point finite difference scheme. Sample designs for submerged spheroids and Wigley hull are carried out to demonstrate the stable convergence, the effectiveness and the robustness of the method. The design of a 5500TEU container carrier is performed with respect to reduction of the wave resistance. To reduce the wave resistance, calculated pressure on the hull surface is modified to have the lower fluctuation, and is applied as a Dirichlet type dynamic boundary condition on the hull surface. The designed hull form is verified to have the lower wave resistance than the initial one not only by computation but also by experiment.  相似文献   
3.
The Gas Hydrate Research and Development Organization (GHDO) of Korea successfully accomplished both coring (hydraulic piston and pressure coring) and logging (logging-while-drilling, LWD, and wireline logging) to investigate the presence of gas hydrate during the first deep drilling expedition in the Ulleung Basin, East Sea of Korea (referred to as UBGH1) in 2007. The LWD data from two sites (UBGH1-9, UBGH1-10) showed elevated electrical resistivity (>80 Ω-m) and P-wave velocity (>2000 m/s) values indicating the presence of gas hydrate. During the coring period, the richest gas hydrate accumulation was discovered at these intervals. Based on log data, the occurrence of gas hydrate is primarily controlled by the presence of fractures. The gas hydrate saturation calculated using Archie’s relation shows greater than 60% (as high as ∼90%) of the pore space, although Archie’s equation typically overestimates gas hydrate saturation in near-vertical fractures. The saturation of gas hydrate is also estimated using the modified Biot-Gassmann theory (BGTL) by Lee and Collett (2006). The saturation values estimated rom BGTL are much lower than those calculated from Archie’s equation. Based on log data, the hydrate-bearing sediment section is approximately 70 m (UBGH1-9) to 130 m (UBGH1-10) in thickness at these two sites. This was further directly confirmed by the recovery of gas hydrate samples and pore water freshening collected from deep drilling core during the expedition. LWD data also strongly support the interpretation of the seismic gas hydrate indicators (e.g., vent or chimney structures and bottom-simulating reflectors), which imply the probability of widespread gas hydrate presence in the Ulleung Basin.  相似文献   
4.
Radionuclide activities of 210Pb and 226Ra were measured to determine bioturbation coefficients (Db) in seven sediment cores from the Korean licensed block for polymetallic nodules in the Clarion–Clipperton Fracture Zone. Variability in Db is considered in the context of the sedimentological, geochemical, and geotechnical properties of the sediments. Db values in the studied cores were estimated using a steady-state diffusion model and varied over a wide range from 1.1 to 293 cm2/yr with corresponding mixing depths (L) of 26 to 144 cm. When excepting for spurious results obtained from cores where diffusive mixing does not apply, Db values range from 1.1 to 9.0 cm2/yr with corresponding mixing depths (L) of 26 to 63 cm. Such wide variability in Db and L values is exceptional in sites with water depths of ~5000 m and is attributed in this study to an uneven distribution of sediment layers with different shear strengths and total organic carbon (TOC) contents, caused by erosion events. The studied cores can be grouped into two categories based on lithologic associations: layers with high maximum shear strength (MSS) and low TOC content, showing a narrow range of Db values (1.1–9.0 cm2/yr); and layers with low MSS and high TOC content, yielding much higher Db values of over 30 cm2/yr. The distribution of different lithologies, and the resultant spatial variability in MSS and labile organic matter content, controls the presence and maximum burrowing depth of infauna by affecting their mobility and the availability of food. This study provides a unique case showing that shear strength, which relates to the degree of sediment consolidation, might be an important factor in controlling rates of bioturbation and sediment mixing depths.  相似文献   
5.
6.
Fault slip analysis of Quaternary faults in southeastern Korea   总被引:1,自引:0,他引:1  
The Quaternary stress field has been reconstructed for southeast Korea using sets of fault data. The subhorizontal direction of the maximum principal stress (σ1) trended ENE and the direction of the minimum principal stress (σ3) was nearly vertical. The stress ratio (Φ = (σ2 − σ3) / (σ1 − σ3)) value was 0.65. Two possible interpretations for the stress field can be made in the framework of eastern Asian tectonics; (1) The σHmax trajectory for southeast Korea fits well with the fan-shaped radial pattern of maximum principal stress induced by the India–Eurasia collision. Thus, we suggest that the main source for this recent stress field in southeast Korea is related to the remote India–Eurasia continental collision. (2) The stress field in Korea shows a pattern similar to that in southwestern Japan. The origin for the E–W trending σHmax in Japan is known to be related to the mantle upwelling in the East China Sea. Thus, it is possible that Quaternary stress field in Korea has evolved synchronously with that in Japan. We suggest further studies (GPS and in situ stress measurement) to test these hypotheses.  相似文献   
7.
The Ulleung Basin, East Sea/Japan Sea, is a Neogene back-arc basin and occupies a tectonically crucial zone under the influence of relative motions between Eurasian, Pacific and Philippine Sea plates. However, the link between tectonics and sedimentation remains poorly understood in the back-arc Ulleung Basin, as it does in many other back-arc basins as well, because of a paucity of seismic data and controversy over the tectonic history of the basin. This paper presents an integrated tectonostratigraphic and sedimentary evolution in the deepwater Ulleung Basin using 2D multichannel seismic reflection data. The sedimentary succession within the deepwater Ulleung Basin is divided into four second-order seismic megasequences (MS1 to MS4). Detailed seismic stratigraphy interpretation of the four megasequences suggests the depositional history of the deepwater Ulleung Basin occurred in four stages, controlled by tectonic movement, volcanism, and sea-level fluctuations. In Stage 1 (late Oligocene through early Miocene), syn-rift sediment supplied to the basin was restricted to the southern base-of-slope, whereas the northern distal part of the basin was dominated by volcanic sills and lava flows derived from initial rifting-related volcanism. In Stage 2 (late early Miocene through middle Miocene), volcanic extrusion occurred through post-rift, chain volcanism in the earliest time, followed by hemipelagic and turbidite sedimentation in a quiescent open marine setting. In Stage 3 (late middle Miocene through late Miocene), compressional activity was predominant throughout the Ulleung Basin, resulting in regional uplift and sub-aerial erosion/denudation of the southern shelf of the basin, which provided enormous volumes of sediment into the basin through mass transport processes. In Stage 4 (early Pliocene through present), although the degree of tectonic stress decreased significantly, mass movement was still generated by sea-level fluctuations as well as compressional tectonic movement, resulting in stacked mass transport deposits along the southern basin margin. We propose a new depositional history model for the deepwater Ulleung Basin and provide a window into understanding how tectonic, volcanic and eustatic interactions control sedimentation in back-arc basins.  相似文献   
8.
We interpreted marine seismic profiles in conjunction with swath bathymetric and magnetic data to investigate rifting to breakup processes at the eastern Korean margin that led to the separation of the southwestern Japan Arc. The eastern Korean margin is rimmed by fundamental elements of rift architecture comprising a seaward succession of a rift basin and an uplifted rift flank passing into the slope, typical of a passive continental margin. In the northern part, rifting occurred in the Korea Plateau that is a continental fragment extended and partially segmented from the Korean Peninsula. Two distinguished rift basins (Onnuri and Bandal Basins) in the Korea Plateau are bounded by major synthetic and smaller antithetic faults, creating wide and considerably symmetric profiles. The large-offset border fault zones of these basins have convex dip slopes and demonstrate a zig-zag arrangement along strike. In contrast, the southern margin is engraved along its length with a single narrow rift basin (Hupo Basin) that is an elongated asymmetric half-graben. Analysis of rift fault patterns suggests that rifting at the Korean margin was primarily controlled by normal faulting resulting from extension rather than strike-slip deformation. Two extension directions for rifting are recognized: the Onnuri and Hupo Basins were rifted in the east-west direction; the Bandal Basin in the east–west and northwest–southeast directions, suggesting two rift stages. We interpret that the east–west direction represents initial rifting at the inner margin; while the Japan Basin widened, rifting propagated southeastward repeatedly from the Japan Basin toward the Korean margin but could not penetrate the strong continental lithosphere of the Korean Shield and changed the direction to the south, resulting in east–west extension to create the rift basins at the Korean margin. The northwest–southeast direction probably represents the direction of rifting orthogonal to the inferred line of breakup along the base of the slope of the Korea Plateau; after breakup the southwestern Japan Arc separated in the southeast direction, indicating a response to tensional tectonics associated with the subduction of the Pacific Plate in the northwest direction. No significant volcanism was involved in initial rifting. In contrast, the inception of sea floor spreading documents a pronounced volcanic phase which appears to reflect asthenospheric upwelling as well as rift-induced convection particularly in the narrow southern margin. We suggest that structural and igneous evolution of the Korean margin, although it is in a back-arc setting, can be explained by the processes occurring at the passive continental margin with magmatism influenced by asthenospheric upwelling.  相似文献   
9.
High-resolution seismic profiles across the shelf margin and trough region of the Korea Strait reveal five shallow, near-surface facies units. These are relict coastal deposits, relict delta deposits, slumps and slides, and trough lag deposits. Most deposits represent a lowstand systems tract, formed during the last lowstand of sea level. Relict coastal deposits represent a linear sediment body along the present shelf margin at water depths of 120–150 m, whereas relict delta deposits occur on the gentle, southwestern slope of the trough at water depths of about 150–200 m. Slumps and slides are dominant at the base of slope in the central trough region. Sediments on the central trough floor were partly eroded and redistributed by strong currents, resulting in lag deposits.  相似文献   
10.
Modern and fossil benthic foraminifera were examined from nine surface sediments and two piston cores along the ~131°W transect in the equatorial Pacific Ocean. This study was conducted to clarify the biotic response of abyssal benthic foraminifera during the last 220 ka to changes in the seasonal extent of the Intertropical Convergence Zone (ITCZ). The abundance of modern benthic foraminifera was high at stations between the equator and 6°N, whereas it was low at stations north of 6°N, which is generally consistent with the latitudinal CaCO3 distribution of surface sediments. The northward increase of Epistominella exigua from the equator to ~6°N is similar to the seasonal variations in chlorophyll-a concentrations in the surface water and ITCZ position along ~131°W. This species was more common at core PC5103 (~6°N) than at core PC5101 (~2°N) after ~130 ka, when the Shannon-Wiener diversity (H’) between the two cores started to diverge. Hence, the presentday latitudinal difference in benthic foraminifera (E. exigua and species diversity) between ~2°N and ~6°N along ~131°W has been generally established since ~130 ka. According to the modern relationship between the seasonality of primary production and seasonal ITCZ variations in the northern margin of the ITCZ, the latitudinal divergence of benthic foraminiferal fauna between ~2°N and ~6°N since ~130 ka appear to have been induced by more distinct variations in the seasonal movement of ITCZ.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号