首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  国内免费   1篇
地球物理   1篇
地质学   7篇
  2010年   2篇
  2006年   1篇
  2003年   1篇
  2000年   1篇
  1997年   1篇
  1992年   2篇
排序方式: 共有8条查询结果,搜索用时 31 毫秒
1
1.
The CO2 atmospheric content has shown large variations over geological times. High contents (up to one order of magnitude more than present-day values) ultimately correspond to discrete episodes of mantle degassing, either juvenile, or subduction-related (carbon recycling). A number of arguments (e.g. the continuous volume increase of carbonate-bearing sediments with time) suggest that, throughout the Earth's history, juvenile CO2 has formed a major contribution to the global carbon budget of the Earth.
The absence of a direct relationship between major volcanic episodes and the average CO2 atmospheric content suggests that volcanoes might not be the only way by which mantle CO2 is transported to the surface. It is proposed that large quantities of juvenile CO2 could temporarily be stored in the lower continental crust during major episodes of granulite formation. These are primarily caused by magmatic underplating and they result in a vertical accretion of the crust by accumulation of CO2-bearing, mantle-derived magmas. Most of the CO2 migrates through the crust during post-metamorphic evolution and isostatic restoration of the normal continental thickness. However, large quantities of CO2 can still be present in some areas, notably as high-density fluids enclosed in minerals.  相似文献   
2.
3.
Banded iron formations (BIF) are prominent in sediments older than 2 Ga. However, little is known about the absolute abundance of BIF in Archean and Early Proterozoic sediments, and the source of the Fe is still somewhat uncertain. Also unknown is the role that Fe may have played in the maintenance of low oxygen pressures in the Archean and Early Proterozoic atmosphere. An analysis of the chemical composition of Precambrian rocks provides some insight into the role of Fe in Precambrian geochemical cycles. The Fe content of igneous rocks is well correlated with their Ti content. Plots of Fe vs. Ti in Precambrian sandstones and graywackes fall very close to the igneous rock trend. Plots of Fe vs. Ti in Precambrian shales also follow this trend but show a definite scatter toward an excess of Fe. Phanerozoic shales and sandstones lie essentially on the igneous rock trend and show surprisingly little scatter. Mn/Ti relations show a stronger indication of Precambrian Mn loss, perhaps due to weathering under a less oxidizing early atmosphere. These data show that Fe was neither substantially added to nor significantly redistributed in Archean and early Proterozoic sediments. Enough hydrothermal Fe was added to these sediments to increase the average Fe content of shales by at most a factor of 2. This enrichment would probably not have greatly affected the near-surface redox cycle or atmospheric oxygen levels. Continued redistribution of Fe and mixing with weathered igneous rocks during the recycling of Precambrian sediments account for the excellent correlation of Fe with Ti in Phanerozoic shales and for the similarity between their Fe/Ti ratio and that of igneous rocks.  相似文献   
4.
We present a 3-year study of concentrations and sulfur isotope values (δ34S, Δ33S, and Δ36S) of sulfur compounds in the water column of Fayetteville Green Lake (NY, USA), a stratified (meromictic) euxinic lake with moderately high sulfate concentrations (12-16 mM). We utilize our results along with numerical models (including transport within the lake) to identify and quantify the major biological and abiotic processes contributing to sulfur cycling in the system. The isotope values of sulfide and zero-valent sulfur across the redox-interface (chemocline) change seasonally in response to changes in sulfide oxidation processes. In the fall, sulfide oxidation occurs primarily via abiotic reaction with oxygen, as reflected by an increase in sulfide δ34S at the redox interface. Interestingly, S isotope values for zero-valent sulfur sampled at this time still reflect production and recycling by phototrophic S-oxidation. In the spring, sulfide S isotope values suggest an increased input from phototrophic oxidation, consistent with a more pronounced phototroph population at the chemocline. This trend is associated with smaller fractionations between sulfide and zero-valent sulfur, suggesting a metabolic rate control on fractionation similar to that for sulfate reduction. Comparison of our data with previous studies indicates that the S isotope values of sulfate and sulfide in the deep waters are remarkably stable over long periods of time, with consistently large fractionations of up to 58‰ in δ34S. Models of the δ34S and Δ33S trends in the deep waters (considering mass transport via diffusion and advection along with biological processes) require that these fractionations are a consequence of sulfur compound disproportionation at and below the redox interface in addition to large fractionations during sulfate reduction. The large fractionations during sulfate reduction appear to be a consequence of the high sulfate concentrations and the distribution of organic matter in the water column. The occurrence of disproportionation in the lake is supported by profiles of intermediate sulfur compounds and by lake microbiology, but is not evident from the δ34S trends alone. These results illustrate the utility of including minor S isotopes in sulfur isotope studies to unravel complex sulfur cycling in natural systems.  相似文献   
5.
A field study was undertaken on the Florida Bay side of Fiesta Key, Florida, to identify the chemical characteristics of a previously unexplored offshore groundwater system and to define the critical parameters affecting groundwater movement and interaction with sediment pore fluids and bedrock. Emphasis was placed on the upper 2 meters of bedrock, where groundwater recharge and discharge potentials are maximized, along a 100 meter transect extending from the island margin. Bedrock cores were used to describe Pleistocene depositional textures, and were sampled at discrete depths to determine the extent of water-rock interaction. Piezometers installed into each core hole were used to monitor surface and ground water tide levels, and for the systematic collection of water samples for a large suite of chemical determinations.Aqueous chemical data indicate that these groundwaters are marine in origin, anoxic, and moderately hypersaline (S = 36–40). Exchange of bedrock pore fluids with overlying Bay waters is restricted by a layer of Holocene sediment and a discontinuous soilstone crust formed at the modern bedrock surface. Groundwater chemistry near the sediment/bedrock interface is marked by elevated concentrations of total alkalinity and Ca2+, and by significant Mg2+ depletion. These waters likely acquired their unusual chemistry by mixing between deeper groundwaters and overlying, early diagenetically altered, sediment porewaters. High alkalinity and calcium concentrations presumably result from the combination of the effects of aerobic metabolism, carbonate dissolution, and sulfate reduction. Mg-depletion most likely resulted from the precipitation of Mg-calcite. These unusual chemistries disappear by 2 m depth in the groundwater system, where Ca2+ and Mg2+ concentrations are similar to those expected for seawater under slightly hypersaline conditions.The Pleistocene bedrock contains low Mg, Sr, F, and P concentrations relative to the overlying unconsolidated Holocene carbonate sediments. This is consistent with the diagenetic recrystallization processes that the bedrock has undergone. Hydraulic conditions favor the net recharge of Florida Bay seawater to the groundwater system, but there are insufficient tide data to identify cyclical water exchange rates or groundwater flow patterns.  相似文献   
6.
应用高分辨率质谱分析苏丹高酸值原油成因   总被引:3,自引:1,他引:2  
程顶胜  窦立荣  万仑坤  史权 《岩石学报》2010,26(4):1303-1312
苏丹Muglad和Melut盆地是苏丹乃至整个中、西非剪切带最富含油气的盆地,所发现的原油主要为中质油(重度为20°~34°API),其次为重质油(重度小于20°API),普遍高含沥青质、高含蜡、高酸值、低含硫。为了探讨高酸值原油的成因,选择了苏丹地区18个不同酸值的原油样品,尝试高分辨率质谱分析上述原油有机酸的组成。结果表明,高酸值原油的有机酸主要由环烷酸组成;环烷酸的平均相对分子质量随降解作用程度增加而增大,分子碳原子数分布范围变宽;环烷酸以一环、二环、三环环烷酸为主。生物降解作用是形成高酸值原油的主要原因。  相似文献   
7.
A review of the literature suggests that large variations in pore-water chemistry exist within soils. The heterogeneity indicates that in soil microchemical environments, the chemistry of pore water evolves independently from one pore to another due to differences in surface area/volume ratios and water residence time. A plug-flow reactor model was developed to examine which size classes of pores contribute the most solute to water draining out of the soil profile, and to explore how temperature might affect a soil’s ability to generate solute. The model is based on the simplification that soil pores can be approximated as a suite of capillaries of varying diameter. The model simulates each size class of pores as a plug-flow reactor with an unique water residence time and surface area.In the model, the pores which drain at the highest water contents have low surface area to water volume ratios and contribute relatively little to the overall solute flux from a soil. The smallest pores that drain at the lowest water contents were found to have the highest surface area to volume ratios and contribute the most solute. The calculations also suggest that activation energy and water viscosity have competing effects on the temperature dependence of weathering. As the temperature increases, the dissolution rate constant increases and smaller pores drain; however, water residence time decreases. This decrease in the water residence time is due to decreasing water viscosity, which can be incorporated into the dissolution rate law for quartz with an activation energy of approximately −15 kJ/mole. Studies that parameterize the temperature dependence of weathering using the Arrhenius approach can account for this effect by reducing the predicted activation energy by an appropriate value.  相似文献   
8.
The latest Permian was a time of major change in ocean chemistry, accompanying the greatest mass extinction of the Phanerozoic. To examine the nature of these changes, samples from two well-studied marine sections that span the Permian-Triassic boundary have been analyzed: the Meishan and Shangsi sections located in Southern China. Isotopic analysis of the carbonate-associated sulfate in these samples provides a detailed record of several isotopic shifts in δ34SCAS approaching and across the PTB, ranging from +30 to −15‰ (VCDT), with repeated asynchronous fluctuations at the two locations. We interpret the patterns of isotopic shifts, in conjunction with other data, to indicate a shallow unstable chemocline overlying euxinic deep-water which periodically upwelled into the photic zone. These chemocline upward excursion events introduced sulfide to the photic zone stimulating a bloom of phototrophic sulfur oxidizing bacteria. We hypothesize that elemental sulfur globules produced by these organisms and 34S-depleted pyrite produced in the euxinic water column were deposited in the sediment; later oxidation led to incorporation as CAS. This created the large changes to the δ34SCAS observed in the latest Permian at these locations.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号