首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   0篇
地球物理   11篇
地质学   10篇
天文学   7篇
自然地理   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2016年   2篇
  2014年   3篇
  2011年   3篇
  2010年   1篇
  2009年   1篇
  2007年   3篇
  2006年   3篇
  2005年   3篇
  2004年   2篇
  2002年   1篇
  2001年   1篇
  1988年   1篇
排序方式: 共有29条查询结果,搜索用时 31 毫秒
1.
Shape Analysis of Isoseismals Based on Empirical and Synthetic Data   总被引:1,自引:0,他引:1  
—?We present an attempt to compare modeled ground-motion acceleration fields with macroseismic observations. Two techniques for the representation of the observed intensities by isoseismals, a smoothing technique and one which visualizes the local uncertainty of an isoseismal, are tested with synthetic and observed data. We show how noise in the data and irregularities in the distribution of observation sites affect the resolution of the isoseismal's shape. In addition to “standard” elongated shapes, we identify cross-like patterns in the macroseismic observations for two Italian earthquakes of strike-slip type; similar patterns are displayed by the theoretical peak acceleration fields calculated assuming the point source models given in the literature.  相似文献   
2.
Kronrod  E. V.  Kronrod  V. A.  Kuskov  O. L.  Nefedyev  Yu. A. 《Doklady Earth Sciences》2018,483(1):1475-1479
Doklady Earth Sciences - The bulk composition of the silicate Moon (crust + mantle, BSM) is determined on the basis of inversion of gravitational and seismic data. It is shown that the mantle...  相似文献   
3.
Churkin  K. O.  Nefedyev  Yu. A.  Andreev  A. O.  Demina  N. Yu.  Kronrod  E. V. 《Astronomy Reports》2021,65(7):580-587
Astronomy Reports - One of the priority tasks of modern astronomy is the observation and study of transient celestial processes, which also concerns photoelectric observations of lunar occultations...  相似文献   
4.
Based on the simultaneous inversion of unique ultralong-range seismic profiles Craton, Kimberlite, Meteorite, and Rift, sourced by peaceful nuclear and chemical explosions, and petrological and geochemical data on the composition of xenoliths of garnet peridotite and fertile primitive mantle material, the first reconstruction was obtained for the thermal state and density of the lithospheric mantle of the Siberian craton at depths of 100–300 km accounting for the effects of phase transformation, anharmonicity, and anelasticity. The upper mantle beneath Siberia is characterized by significant variations in seismic velocities, relief of seismic boundaries, degree of layering, and distribution of temperature and density. The mapping of the present-day lateral and vertical variations in the thermal state of the mantle showed that temperatures in the central part of the craton at depths of 100–200 km are somewhat lower than those at the periphery and 300–400°C lower than the mean temperature of tectonically younger mantle surrounding the craton. The temperature profiles derived from the seismic models lie between the 32.5 and 35 mW/m2 conductive geotherms, and the mantle heat flow was estimated as 11–17 mW/m2. The depth of the base of the cratonic thermal lithosphere (thermal boundary layer) is close to the 1450 ± 100°C isotherm at 300 ± 30 km, which is consistent with published heat flow, thermobarometry, and seismic tomography data. It was shown that the density distribution in the Siberian cratonic mantle cannot be described by a single homogeneous composition, either depleted or enriched. In addition to thermal anomalies, the mantle density heterogeneities must be related to variations in chemical composition with depth. This implies significant fertilization at depths greater than 180–200 km and is compatible with the existence of chemical stratification in the lithospheric mantle of the craton. In the asthenosphere-lithosphere transition zone, the craton root material is not very different in chemical composition, thermal regime, and density from the underlying asthenosphere. It was shown that minor variations in the chemical composition of the cratonic mantle and position of chemical (petrological) boundaries and the lithosphere-asthenosphere boundary cannot be reliably determined from the interpretation of seismic velocity models only.  相似文献   
5.
O.L. Kuskov  V.A. Kronrod 《Icarus》2005,177(2):550-569
Models of the internal structure of completely differentiated Europa and partially differentiated Callisto have been constructed on the basis of Galileo gravity measurements, geochemical constraints on composition of ordinary and carbonaceous chondrites, and thermodynamic data on the equations of state of water, high-pressure ices, and meteoritic material. We assume thermal and mechanical equilibrium for the interiors of the satellites. A geophysically and geochemically permissible thickness of Europa's outer water-ice shell lies between 105 and 160 km (6.2-9.2% of total mass). Our results show that the bulk composition of the rock-iron core of Europa may be described by material approaching the L/LL-type chondrites in composition, but cannot be correlated either with the material of CI chondrites or H chondrites. For Europa's L/LL-chondritic models, core radii are estimated to be 470-640 km (5.3-12.5% of total mass). The allowed thickness of Europa's H2O layer ranges from 115±10 km for a differentiated L/LL-type chondritic mantle with a crust to 135±10 km for an undifferentiated mantle. We show that Callisto must only be partially differentiated into an outer ice-I layer, a water ocean, a rock-ice mantle, and a rock-iron core (mixture of anhydrous silicates and/or hydrous silicates + FeFeS alloy). We accept that the composition of the rock-iron material of Callisto is similar to the bulk composition of L/LL-type chondritic material containing up to 10-15% of iron and iron sulfide. Assuming conductive heat transfer through the ice-I crust [Ruiz, 2001. The stability against freezing of an internal liquid-water ocean on Gallisto. Nature, 412, 409-411], heat flows were estimated and the possibility of the existence of a water ocean in Callisto was evaluated. The liquid phase is stable (not freezing) beneath the ice crust, if the heat flow is between 3.3 and 3.7 mW m−2, which corresponds to the heat flow from radiogenic sources. The thickness of the ice-I crust is 135-150 km, and that of the underlying water layer, 120-180 km. The results of modeling support the hypothesis that Callisto may have an internal liquid-water ocean. The allowed total (maximum) thickness of the outer water-ice shell is up to 270-315 km. Rock-iron core radii, depending on the presence or absence of hydrous silicates, do not exceed 500-700 km, the thickness of an intermediate ice-rock mantle is not less than 1400 km, and its density is in the range of 1960-2500 kg m−3. The surface temperature of Callisto is expected to be 100-112 K. The total amount of H2O in Callisto is found to be 49-55 wt%. The correspondence between the density and moment of inertia values for bulk ice-free Io, rock-iron core of ice-poor Europa, and rock-iron cores of Ganymede and Callisto shows that their bulk compositions may be, in general, similar and may be described by the composition close to a material of the L/LL-type chondrites with the (Fetot/Si) weight ratios ranging from 0.9 to 1.3. Planetesimals composed of these types of ordinary chondrites could be considered as analogues of building material for the rock-iron cores of the Galilean satellites. Similarity of bulk composition of the rock-iron cores of the inner and outer satellites implies the absence of iron-silicon fractionation in the protojovian nebula.  相似文献   
6.
The VPREMOON seismic reference Moon model (Garcia et al., 2011) has been tested with respect to the thermal regime and chemical composition of the mantle. Based on a self-consistent thermodynamic approach and petrological models of the lunar mantle covering a wide range of concentrations of CaO, Al2O3, and FeO, we convert the P- and S-wave velocity profiles to the temperature–depth profiles. The solution procedure relies on the method of the Gibbs free energy minimization and the equations of state for the mantle material which take into account the effects of phase transformations, anharmonicity, and anelasticity. We find that regardless of the chemical composition, the positive P- and S-wave velocity gradient in the lunar mantle leads to a negative temperature gradient, which has no physical basis. For adequate mantle temperatures, the P- and S-wave velocities should remain almost constant or slightly decrease with depth (especially VS) as a result of the effects of the temperature, which grows faster than pressure. These findings underscore the importance of the relationship of the thermodynamics and physics of minerals with seismology.  相似文献   
7.
A new model is proposed for the structure of the Kaapvaal craton lithosphere. Based on chemical thermodynamics methods, profiles of the chemical composition, temperature, density, and S wave velocities are constructed for depths of 100–300 km. A solid-state zone of lower velocities is discovered on the S velocity profile in the depth interval 150–260 km. The temperature profiles are obtained from absolute values of P and S velocities, taking into account phase transformations, anharmonicity, and anelastic effects. The examination of the sensitivity of seismic models to the chemical composition showed that relatively small variations in the composition of South African xenoliths result in lateral temperature variations of ~200°C. Inversion of some seismic profiles (including IASP91) with a fixed bulk composition of garnet peridotites (the primitive mantle material) leads to a temperature inversion at depths of 200–250 km, which is physically meaningless. It is supposed that the temperature inversion can be removed by gradual fertilization of the mantle with depth. In this case, the craton lithosphere should be stratified in chemical composition. The depleted lithosphere composed by garnet peridotites exists to depths of 175–200 km. The lithospheric material at depths of 200–250 km is enriched in basaltoid components (FeO, Al2O3, and CaO) as compared with the material of garnet peridotites but is depleted in the same components as compared with the fertile substance of the underlying primitive mantle. The material composing the craton root at a depth of ~275 km does not differ in its physical and chemical characteristics from the composition of the normal mantle, and this allows one to estimate the thickness of the lithosphere at 275 km. The results of this work are compared with data of seismology, thermal investigations, and thermobarometry.  相似文献   
8.
Models for the composition and structure of the Galilean satellites of Jupiter (Io, Europa, and Ganymede) were constructed using geophysical data provided by the Galileo mission on the mass, average density, and moment of inertia, as well as thermodynamic data on the equation of the state of water, high-pressure ices, and meteoritic materials. The distribution of density, pressure, temperature, and gravity acceleration in the interiors of the satellites was determined. A simulation of the internal structure of the satellites showed the possibility of identical bulk compositions for water-free Io and the rock-iron cores of Europa and Ganymede (i.e., satellites without their outer ice-water shells). The sizes of the satellites’ cores (Fe with 10 wt % S) and the thicknesses of the ice-water shells of Europa (120 km) and Ganymede (900 km) were also estimated. These satellites contain 7 and 47% H2O, respectively. The radii of Fe-10% S cores are 737 km for Io, 695 km for Ganymede, and 576 km for Europa. The ratios of the radii and masses of the Fe-S scores and rock-iron cores of Io, Ganymede, and Europa are almost identical and equal R(Fe-10%S core)/R Cor = 0.4 and M(Fe-10% S core)/M Cor = 10.55 ± 0.3 wt %. It was shown that the geochemical parameters of the rock-iron constituent of the satellites are similar to the material of L/LL chondrites. The silicate fraction of the satellites contains about 16 wt % FeO and shows an Fe/Si mass ratio of 0.53. The total iron to silicon mass ratio is also identical in the three satellites: (Fetot/Si)Cor = 0.99 ± 0.02. This value is different from that in the bulk compositions of the most oxidized carbonaceous chondrites and the most reduced H chondrites. Io, Europa, and Ganymede could be formed in the accretion disk of Jupiter from a material similar to L/LL chondrites under relatively low temperatures, not higher than the evaporation temperature of Fe and Fe-Mg silicates.  相似文献   
9.
A method is proposed for determining the temperature of the Earth’s upper mantle from geochemical and seismic data. The data are made consistent by physicochemical simulations, which enable one to derive physical characteristics from geochemical compositional models (direct problem) and to convert seismic velocity profiles into model for the temperature distribution (inverse problem). The methods were used to simulate temperature distribution profiles in the “normal” and “cold” mantle on the basis of profiles for the velocities of P and S waves in the IASP91 model and regional models for the Kaapvaal craton. The constraints assumed for the chemical composition included the depleted material of garnet peridotites and the fertile primitive mantle. The conversion of seismic into thermal profiles was conducted by minimizing the Gibbs free energy with the use of equations of state for the mantle material with regard for anharmonicity and the effects of inelasticity. The sensitivity of the model to the chemical composition and its importance in application to the solution of inverse problems is demonstrated. Temperature profiles derived from the IASP91 and some regional models for depths of 200–210 km display an inflection on geotherms toward decreasing temperatures, which is physically senseless. This anomaly cannot be related to either the presence of volatiles or the occurrence of partial melting, because both of them should have resulted in a decrease, but not an increase, in the seismic velocities. Temperature inversion can be ruled out by the gradual fertilization of the mantle with depth. In this situation, the upper mantle material at depths of 200–300 km should be enriched in FeO, Al2O3, and CaO relative to garnet peridotites and be simultaneously depleted in these oxides relative to the pyrolite material of the primitive mantle. It can be generally concluded that both the lithosphere and sublithospheric mantle of the Kaapvaal craton, as well as the normal mantle, should be chemically stratified.  相似文献   
10.
The optimal scaling problem for the time t(L × L) between two successive events in a seismogenic cell of size L is considered. The quantity t(L × L) is defined for a random cell of a grid covering a seismic region G. We solve that problem in terms of a multifractal characteristic of epicenters in G known as the tau-function or generalized fractal dimensions; the solution depends on the type of cell randomization. Our theoretical deductions are corroborated by California seismicity with magnitude M ≥ 2. In other words, the population of waiting time distributions for L = 10–100 km provides positive information on the multifractal nature of seismicity, which impedes the population to be converted into a unified law by scaling. This study is a follow-up of our analysis of power/unified laws for seismicity (see Pure and Applied Geophysics 162 (2005), 1135 and GJI 162 (2005), 899).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号