首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
地球物理   9篇
地质学   2篇
  2021年   1篇
  2018年   1篇
  2013年   4篇
  2012年   1篇
  2004年   1篇
  1997年   1篇
  1995年   1篇
  1983年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
Abstract

We investigate the general methodology for an intensive development of coastal aquifers, described in a companion paper, through its application to the management of the Akrotiri aquifer, Cyprus. The Zakaki area of that aquifer, adjacent to Lemessos City, is managed such that it permits a fixed annual agricultural water demand to be met, as well as and a fraction of the water demand of Lemessos, which varies according to available surface water. Effluents of the Lemessos wastewater treatment plant are injected into the aquifer to counteract the seawater intrusion resulting from the increased pumping. The locations of pumping and injection wells are optimized based on least-cost, subject to meeting the demand. This strategy controls sea intrusion so effectively that desalting of only small volumes of slightly brackish groundwater is required over short times, while ~2.3 m3 of groundwater is produced for each 1 m3 of injected treated wastewater. The cost over the 20-year period 2000–2020 of operation is ~40 M€ and the unit production cost of potable water is under 0.2 €/m3. The comparison between the deterministic and stochastic analyses of the groundwater dynamics indicates the former as conservative, i.e. yielding higher groundwater salinity at the well. The Akrotiri case study shows that the proposed aquifer management scheme yields solutions that are preferable to the widely promoted seawater desalination, also considering the revenues from using the treated wastewater for irrigation.

Citation Koussis, A. D., Georgopoulou, E., Kotronarou, A., Mazi, K., Restrepo, P., Destouni, G., Prieto, C., Rodriguez, J. J., Rodriguez-Mirasol, J., Cordero, T., Ioannou, C., Georgiou, A., Schwartz, J. & Zacharias, I. (2010) Cost-efficient management of coastal aquifers via recharge with treated wastewater and desalination of brackish groundwater: application to the Akrotiri basin and aquifer, Cyprus. Hydrol. Sci. J. 55(7), 1234–1245.  相似文献   
2.
Hydrogeology Journal - A simple method is presented for estimating the specific storage of a confined aquifer from an overdamped slug test in a fully penetrating well. This method is based on the...  相似文献   
3.
4.
ABSTRACT

Reverse routing can be used to transfer flood- or pollution-related information monitored at a downstream gauging station to an ungauged upstream cross-section. This signal identification problem is ill-posed and, as such, is sensitive to perturbations in the data to be inverted; therefore, the amplification of errors, e.g., those befalling measurements, must be controlled. Storage routing models are parsimonious diffusion wave substitutes and well suited for conversion to direct reverse routers. We present efficient inversion frameworks based on the lag-and-route (single reservoir plus exact reverse lag-step) and the reservoirs-in-series models. In both cases we invert a centred finite difference scheme of the reservoir storage balance equation that involves only one value of the unknown signal; signal values identified in previous reverse time steps, which would carry perturbations, are absent. This simple structure endows the reverse scheme with robustness. Procedures are verified with perfect and with error-seeded data; solution oscillations caused by the latter are damped by low-pass filtering. Both inverse routing models regain the upstream signals with high fidelity. Reverse storage routing is exemplified in a demonstration of reservoir control and in a field case of solute transport in a stream.
Editor M.C. Acreman; Associate editor X. Chen  相似文献   
5.
A hydrologic model calibration methodology that is based on groundwater data is developed and implemented using the US Geological Survey's precipitation-runoff modelling system (PRMS) and the modular modelling system (MMS), which performs automatic calibration of parameters. The developed methodology was tested in the Akrotiri basin, Cyprus. The necessity for the groundwater-based model calibration, rather than a typical runoff-based one, arose from the very intermittent character of the runoff in the Akrotiri basin, a case often met in semi-arid regions. Introducing a datum and converting groundwater storage to head made the observable groundwater level the calibration indicator. The modelling of the Akrotiri basin leads us to conclude that groundwater level is a useful indicator for hydrological model calibration that can be potentially used in other similar situations in the absence of river flow measurements. However, the option of an automatic calibration of the complex hydrologic model PRMS by MMS did not ensure a good outcome. On the other hand, automatic optimisation, combined with heuristic expert intervention, enabled achievement of good calibration and constitutes a valuable means for saving effort and improving modelling performance. To this end, results must be scrutinised, melding the viewpoint of physical sense with mathematical efficiency criteria. Thus optimised, PRMS achieved a low simulation error, good reproduction of the historic trend of the aquifer water level evolution and reasonable physical behaviour (good hydrologic balance, Reasonable match of aquifer level evolution, good estimation of mean natural recharge rate).  相似文献   
6.
Some mathematical aspects of storage routing are investigated analytically and through numerical simulation. The minimum size of the time interval required to eliminate computed values at the beginning of the outflow hydrograph falling below the initial steady flow rate is given for two routing schemes. The stability behavior of a refined Muskingum scheme is explored; it is found that values of the weighting coefficient up to 1.0 may be used with appropriately specified time intervals. The concept of “relative” storage is analyzed and it is shown that it is unnecessary when the correct initial condition of the storage is considered. The classical best straight-line fit procedure between storage and weighted discharge is investigated. In an example case, it is demonstrated that this method of system identification is not reliable. The possibility of using discharge-dependent parameters is discussed.  相似文献   
7.
8.
9.
Abstract

Semi-arid coastal zones often suffer water-stress, as water demand is high and markedly seasonal, due to agriculture and tourism. Driven by scarcity of surface water, the communities in semi-arid coastal regions turn to aquifers as prime water source; but intensive exploitation of coastal aquifers causes seawater intrusion, which degrades the quality of groundwater. The cost-efficient and sustainable development of coastal aquifers can be achieved through a holistic management scheme which combines two non-traditional water sources: (a) saltwater, to be treated to the desired quality, and (b) wastewater, to be re-claimed to augment aquifer recharge for control of seawater intrusion, and also to meet certain demands. This management scheme is based on the idea that it is cost-advantageous to: (i) desalt brackish groundwater, instead of seawater, as the former requires far less energy, and (ii) to re‐use wastewater at only the differential cost to any treatment already practiced. In this paper, we present the general framework of the proposed management scheme, and a decision aid tool (DAT) which has been developed to assist decision makers to explore the scheme's decision space. The DAT uses cost as optimization criterion to screen various management scenarios, via modelling of the dynamic natural-engineered system behaviour, and identifies those cost-efficient ones that meet the water demand and achieve aquifer protection.

Citation Koussis, A. D., Georgopoulou, E., Kotronarou, A., Lalas, D. P., Restrepo, P., Destouni, G., Prieto, C., Rodriguez, J. J., Rodriguez-Mirasol, J., Cordero, T. & Gomez-Gotor, A. (2010 Koussis, A. D., Georgopoulou, E., Kotronarou, A., Mazi, K., Restrepo, P., Destouni, G., Prieto, C., Rodriguez, J. J., Rodriguez-Mirasol, J., Cordero, T., Schwartz, J., Ioannou, C., Georgiou, A. and Zacharias, I. 2010. Cost-efficient management of coastal aquifers in water-stressed regions via recharge with treated wastewater and desalination of brackish groundwater: application to the Akrotiri basin and aquifer, Cyprus. Hydrol. Sci. J, 55(7): 12341245. [Taylor & Francis Online], [Web of Science ®] [Google Scholar]) Cost-efficient management of coastal aquifers via recharge with treated wastewater and desalination of brackish groundwater: general framework. Hydrol. Sci. J. 55(7),1217–1233.  相似文献   
10.
Sharp-interface (or interface) flow models with Dupuit-Forchheimer approximation are widely used to assess, to first order, an aquifer’s vulnerability to seawater intrusion (SWI) and to evaluate sustainable management options for coastal groundwater resources at the screening level. Recognising that interface flow models overestimate SWI, corrections have been proposed to account for the neglected mixing and also for the outflow through a finite gap. These corrections, however, were introduced in the context of specific studies and may not be generally applicable as proposed. The interface model is revisited, placing its corrections in the context of variable-density flow (VDF) theory, by expressing them in terms of the dimensionless parameters governing VDF in schematised (aspect ratio?=?thickness/length) homogeneous confined coastal aquifers: the coupling parameter (α), a Péclet number (Pe), and the dispersivities ratio (rα). Interfaces are compared to the 50%-salinity lines of VDF numerical solutions and regression equations are developed for estimating the outflow gap and for correcting the length of the interface (terminating with a blunted edge); the dispersion correction, which modifies the interface curvature, is restated with a variable exponent. The corrections for dispersion and for the interface length appear to be the most effective; an outflow gap is important only at small α values (strong advection relative to vertical flow due to density differences). These concepts are applied successfully to calculate the interface position in the lowermost confined sub-unit of the Coastal Plain aquifer of Israel, as an estimate of SWI.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号