首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
地质学   2篇
  2018年   1篇
  2006年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.

The Diavik Diamond Mine in the NWT of Canada has produced in excess of 100 million carats from 3 kimberlite pipes since mining commenced in 2002. Here, we present new findings from deep (>400 m below surface) mining, sampling and drilling work in the A154N kimberlite volcano that require a revision of previous geological and emplacement models and provide a window into how the sub-continental lithospheric mantle (SCLM) below Diavik was sampled by kimberlite magmas through time. Updated internal geological models feature two volcanic packages interpreted to represent two successive cycles of explosive eruption followed by active and passive sedimentation from a presumed crater-rim, both preceded and followed by intrusions of coherent kimberlite. Contact relationships apparent among the geological units allow for a sequential organization of as many as five temporally-discrete emplacement events. Representative populations of mantle minerals extracted from geological units corresponding to four of the emplacement events at A154N are analyzed for major and trace elements, and provide insights into the whether or not kimberlites randomly sample from the mantle. Two independent geothermometers using clinopyroxene and garnet data indicate similar source depths for clinopyroxenes and G9 garnets (130–160 km), and suggest deeper sampling with time for both clinopyroxene and garnets. Harzburgite is limited to 110–160 km, and appears more prevalent in early, low-volume events. Variable ratios of garnet parageneses from the same depth horizons suggest random sampling by passing magmas, but deeper garnet sampling through time suggests early preferential sampling of shallow/depleted SCLM. Evaluations of Ti, Zr, Y and Ga over the range of estimated depths support models of the SCLM underlying the central Slave terrane.

  相似文献   
2.
High seismic Vp velocity anomalies (8.7–9.0 km s− 1) have long been known about in regions of the uppermost mantle of the Siberian craton, often in association with kimberlite fields. Laboratory measurement of seismic properties of five xenoliths, three peridotites and two eclogites, from the Udachnaya kimberlite under confining pressures up to 600 MPa were extrapolated to uppermost mantle PT conditions of 1500 MPa and 500 °C, however none of the velocities are high enough to explain the observations. Eclogites or peridotites are commonly considered to be the source of anomalous high velocities. We prefer a peridotitic source to an eclogitic source due to the unusual chemistry and regional uniformity of eclogitic garnets required, maximum velocity limitations on laboratory measurements of seismic properties of natural eclogites, and purported abundance of eclogites in the lithosphere. Alternatively, a highly depleted peridotite, such as dunite or harzburgite, can produce velocities high enough to match observations. Olivine petrofabrics in most peridotites, including the three peridotites used in this study, are great enough to produce the observed high velocities provided olivine petrofabrics are continuous enough and correctly oriented to be seismically detectable and the modal proportion of olivine is high. There have been suggestions by other authors that the Siberian upper mantle is highly depleted and that a lithosphere-scale shear zone exists, which may have acted to organize fabrics into segments large enough for detection. Anomalously high Vp–Vs velocity ratios of greater than 1.8 are expected parallel to the olivine [100] maxima required to be present in a high-velocity olivine-dominated upper mantle. Vp–Vs velocity ratios can serve as a means of inferring large-scale anisotropy when limited seismic data are available, as in Siberia.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号