首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
地球物理   3篇
地质学   5篇
综合类   1篇
  2018年   1篇
  2016年   2篇
  2014年   1篇
  2012年   3篇
  2004年   1篇
  2003年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
The slope instability is connected to a large diversity of causative and triggering factors, ranging from inherent geological structure to the environmental conditions. Thus, assessment and prediction of slope failure hazard is a difficult and complex multi-parametric problem. In contrast to the analytic approaches, the systems approaches are able to consider infinite number of affecting parameters and assess the interactions of each couple of the parameters in the system. This paper presents a complete application of the rock engineering systems approach in prediction of the instability potential of rock slopes in 15 stations along a 20?km section of the Khosh-Yeylagh Main Road, Iran as the case study of the research. In this research, the main objective has been defining the principal causative and triggering factors responsible for the manifestation of slope instability phenomena, quantify their interactions, obtain their weighted coefficients, and calculate the slope instability index, which refers to the inherent potential instability of each slope of the examined region. The final results have been mapped to highlight the rock slopes susceptible to instability. Finally, as a preliminary validation on the utilization of systems approach in the study region, the stability of investigated rock slopes were analyzed using an empirical method and the results were compared. The comparisons showed a rather good coincidence between the given classes of two methods.  相似文献   
2.
The effects of salinity on the copepod, Acartia tonsa in terms of daily egg production rate (EPR), hatching success, fecal pellet production rate (FPR), naupliar development time and survival, sex ratio, and total life span were determined in laboratory conditions through three experiments. In experiment 1, EPR, hatching success, and FPR of individual females were monitored at salinities of 13, 20, 35 and 45 during short-periods (seven consecutive days). Results show EPR was affected by salinity with the highest outputs recorded at 20 and 35, respectively, which were considerably higher than those at 13 and 45. Mean FPR was also higher in 35 and 20. In experiment 2, the same parameters were evaluated over total life span of females (long-term study). The best EPR and FPR were observed in 35, which was statistically higher than at 13 and 20. In experiment 3, survival rates of early nauplii until adult stage were lowest at a salinity of 13. The development time increased with increasing of salinity. Female percentage clearly decreased with increasing salinity. Higher female percentages (56.7% and 52.2%, respectively) were significantly observed at two salinities of 13 and 20 compared to that at 35 (25%). Total longevity of females was not affected by salinity increment. Based on our results, for mass culture we recommend that a salinity of 35 be adopted due to higher reproductive performances, better feeding, and faster development of A. tonsa.  相似文献   
3.
4.
The main intention of the present study is to reduce wind, wave, and seismic induced vibrations of jackettype offshore wind turbines (JOWTs) through a newly developed vibration absorber, called tuned liquid column gas damper (TLCGD). Using a Simulink-based model, an analytical model is developed to simulate global behavior of JOWTs under different dynamic excitations. The study is followed by a parametric study to explore efficiency of the TLCGD in terms of nacelle acceleration reduction under wind, wave, and earthquake loads. Study results indicate that optimum frequency of the TLCGD is rather insensitive to excitation type. In addition, while the gain in vibration control from TLCGDs with higher mass ratios is generally more pronounced, heavy TLCGDs are more sensitive to their tuned frequency such that ill-regulated TLCGD with high mass ratio can lead to destructive results. It is revealed that a well regulated TLCGD has noticeable contribution to the dynamic response of the JOWT under any excitation.  相似文献   
5.
All the conventional techniques for the analysis of slope stability ranging from simple kinematic analysis using stereonets, to the various widely used limit equilibrium methods, to sophisticated numerical methods belong to a category that are generally known as the analytic approaches and thus are only able to consider a limited number of affecting factors and then solve the problem in details. In contrast, the systems approaches not only can examine the problem in its totality with a complete list of the components, but also can take the interactions between the factors into account. This paper presents a complete application of a well-known systems technique named the Interaction Matrix (IM) in ranking the instability potential of rock slopes of the Khosh-Yeylagh Main Road, Iran as the case study of the research. For this purpose, 15 stations have been selected and a relatively comprehensive database containing the fieldwork information has been constructed. Following the IM technique, the most important factors relating to the general environment and to the rock mass characteristics have been considered. Their reciprocal causes and effects have been analyzed in order to weight each parameter according to its degree of interactivity in the system. Then, the slope instability index has been calculated which refers to the inherent potential instability of each slope of the examined region. The final instability ranking has been presented for the investigated slopes in Khosh-Yeylagh Main Road based on a simple classification. The main aim of the study is to extend the use of systems approach and specifically the IM technique in slope stability analysis. Also, this research shows the importance of consideration of an approximately complete set of key parameters affecting the stability of rock slopes.  相似文献   
6.
The Taknar Zone is located at the northern margin of the eastern Iranian continental microplate, and it is host to the Taknar massive sulfide deposit. This study was conducted to find new exploration targets. We used multiple data sources (e.g., litho-geochemical and magnetic surveys) to produce more effective predictive maps. Principal component analysis and hierarchical cluster analysis methods were used to organize the new information into favorability maps and to determine multi-element correlations. We then employed fuzzy logic modeling to create favorability maps from geochemical and magnetic data. A concentration–area multifractal method was used to evaluate the final integrated favorability map for massive sulfide exploration. Our new map identifies previously unexploited sites in the eastern part of the study area, near the boundary of the Taknar formation, with intrusive and subvolcanic rocks, with potential for mineral exploration. The newly defined targets are attractive because old mined ore bodies are also identified in the favorability map.  相似文献   
7.
Rain gauges are installed to measure pointwise precipitation and provide a comprehensive perspective of its spatiotemporal variations. Selection of an efficient and reliable rainfall monitoring network is a key role to reduce its maintenance and handling cost. The main purpose of the current paper is to compare efficiencies of various network design methods. The applied methods are entropy theory (as probabilistic multi-criteria decision-making) and genetic algorithm (as one of the heuristic methods) with three objective functions. Also, two classical (ordinary kriging; OK) and modern (Bayesian maximum entropy; BME) spatial simulation methods were undertaken to provide a comprehensive spatial simulation of precipitation. The proposed assessment was applied on spatial mean annual precipitation variability in the Namak Lake watershed located in the central part of Iran. The final efficiency of developed network design methods is evaluated in terms of three criteria known as mass estimation error, total error, and spatial bias of estimated rainfall. Based on the results, different network distributions have been proposed by the methods. Despite the reliability of the heuristic approach in nonlinear optimization due to its mathematical principle, the results indicated that the network design based on entropy theory can be used to estimate long-term mean annual precipitation more reliably and accurately. Results of the mass estimation error have shown 78 and 83% superiority of the entropy theory approach from the worst approach obtained from the OK and BME methods, respectively.  相似文献   
8.
In this study, the effectiveness of a tuned liquid column-gas damper, TLCGD, on the suppression of seismic-induced vibrations of steel jacket platforms is evaluated. TLCGD is an interesting choice in the case of jacket platforms because it is possible to use the structural elements as the horizontal column of the TLCGD. The objective here is to find the optimum geometric parameters, namely orientation and configuration of vertical columns, length ratio, and area ratio of the TLCGD, considering nonlinear damping of the TLCGD and water-structure interaction between the jacket platform and sea water. The effects of different characteristics of ground motion such as PGA and frequency content on the optimum geometry are also investigated and it is observed that these features have some influence on the optimum area ratio. Finally it is observed that pulse arrangement of ground acceleration is one of the most important parameters affecting the efficiency of a TLCGD. In other words, it is found that the TLCGD’s capability to reduce the RMS responses depends only on the frequency content of the ground acceleration, but its capability to reduce the maximum responses depends on both the frequency content and the pulse arrangement of the ground acceleration.  相似文献   
9.
A recent development in strong motion instrumentation in Japan provides an opportunity to collect valuable data sets, especially after moderate and large magnitude events. Gathering and modeling these data is a necessity for better understanding of regional ground motion characteristics. Estimations of the spatial distribution of earthquake ground motion plays an important role in early-stage damage assessments for both rescue operations by disaster management agencies as well as damage studies of urban structures. Subsurface geology layers and local soil conditions lead to soil amplification that contributes to the estimated ground motion parameters of the surface. We present a case study of the applicability of the nationally proposed GIS-based soil amplification ratios [J. Soil Dyn. Earthqu. Eng. 19 (2000) 41–53] to the October 6, 2000 Tottori-ken Seibu (western Tottori Prefecture) and the March 24, 2001 Geiyo earthquakes in Japan. First, ground motion values were converted to those at a hypothetical ground base-rock level (outcrop) using an amplification ratio for each 1×1 km area, based on geomorphological and subsurface geology information. Then a Kriging method, assuming an attenuation relationship at the base-rock as a trend component, is applied. Finally, the spatial distribution of ground motion at ground surface is obtained by applying GIS-based amplification factors for the entire region. The correlation between the observed and estimated ground motion values is reasonable for both earthquakes. Thus, the proposed method is applicable in near real-time early-damage assessments and seismic hazard studies in Japan.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号