首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   1篇
地球物理   7篇
地质学   7篇
  2022年   1篇
  2018年   1篇
  2017年   1篇
  2016年   4篇
  2011年   3篇
  2010年   3篇
  2008年   1篇
排序方式: 共有14条查询结果,搜索用时 31 毫秒
1.
The age of past lava flows is crucial information for evaluating the hazards and risks posed by effusive volcanoes, but traditional dating methods are expensive and time‐consuming. This study proposes an alternative statistical dating method based on remote sensing observations of tropical volcanoes by exploiting the relationship between lava flow age and vegetation cover. First, the factors controlling vegetation density on lava flows, represented by the normalized difference vegetation index (NDVI), were investigated. These factors were then integrated into pixel‐based multi‐variable regression models of lava flow age to derive lava flow age maps. The method was tested at a pixel scale on three tropical African volcanoes with considerable recent effusive activity: Nyamuragira (Democratic Republic of Congo), Mt Cameroon (Cameroon) and Karthala (the Comoros). Due to different climatic and topographic conditions, the parameters of the spatial modeling are volcano‐specific. Validation suggests that the obtained statistical models are robust and can thus be applied for estimating the age of unmodified undated lava flow surfaces for these volcanoes. When the models are applied to fully vegetated lava flows, the results should be interpreted with caution due to the saturation of NDVI. In order to improve the accuracy of the models, when available, spatial data on temperature and precipitation should be included to directly represent climatic variation. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
2.
This study focuses on the compound pahoehoe lava flow fields of the 2000 eruption on Mount Cameroon volcano, West Africa and it comprehensively documents their morphology. The 2000 eruption of Mount Cameroon took place at three different sites (sites 1, 2 and 3), on the southwest flank and near the summit that built three different lava flow fields. These lava flow fields were formed during a long‐duration (28th May–mid September) summit and flank eruption involving predominantly pahoehoe flows (sites 2 and 3) and aa flows (site 1). Field observations of flows from a total of four cross‐sections made at the proximal end, midway and at the flow front, have been supplemented with data from satellite imagery (SRTM DEM, Landsat TM and ETM+) and are used to offer some clues into their emplacement. Detailed mapping of these lava flows revealed that site 1 flows were typically channel‐fed simple aa flows that evolved as a single flow unit, while sites 2 and 3 lava flow fields were fed by master tubes within fissures producing principally tube‐fed compound pahoehoe flows. Sites 2 and 3 flows issued from ∼ 33 ephemeral vents along four NE–SW‐trending faults/fissures. Pahoehoe morphologies at sites 2 and 3 include smooth, folded and channelled lobes emplaced via a continuum of different mechanisms with the principal mechanism being inflation. The dominant structural features observed on these flow fields included: fissures/faults, vents, levees, channels, tubes and pressure ridges. Other structural features present were pahoehoe toes/lobes, breakouts and squeeze‐ups. Slabby pahoehoe resulting from slab‐crusted lava was the transitionary lava type from pahoehoe to aa observed at all the sites. Transition zones correspond to slopes of > 10°. Variations in flow morphology and textures across profiles and downstream were repetitive, suggesting a cyclical nature for the responsible processes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
3.
European Union directives as well as national legislation are placing great emphasis on the inclusion of stakeholder perspectives in the governance of risks from natural hazards. This should help decision makers formulate better policies. However, to date, there is little information on stakeholders’ perspectives with respect to landslide risk governance. This paper addresses the gap by reporting on research in Nocera Inferiore, Italy. The research is based on a documentary analysis, 43 semi-structured interviews and a survey submitted to 373 residents. The political instability, the unfairness of national funding allocation across municipalities and the residents’ lack of knowledge about risk assessment and emergency planning are some of the main barriers to effective risk governance. Moreover, there are divergent, sometimes even opposite, stakeholders’ views on several issues, such as the relevance of illegal development in risky areas. The results highlight the importance of addressing these divergent views and including the plurality of voices as a prerequisite for inclusive risk governance. The research provided essential background information for a participatory process, which was designed to support decisions on landslide risk mitigation measures in Nocera Inferiore (Linnerooth-Bayer et al. this issue). The methodology will be of more general interest to researchers and policymakers intent upon including stakeholder perspectives in natural risk governance.  相似文献   
4.
Bwambale  Bosco  Nyeko  Martine  Sekajugo  John  Kervyn  Matthieu 《Natural Hazards》2022,110(3):1847-1867
Natural Hazards - The integration of indigenous knowledge into understanding disasters from natural hazards is hitherto hampered by the limited conceptualization of the process that shapes...  相似文献   
5.
With a paroxysmal ash eruption on 4 September 2007 and the highly explosive activity continuing in 2008, Oldoinyo Lengai (OL) has dramatically changed its behavior, crater morphology, and magma composition after 25 years of quiet extrusion of fluid natrocarbonatite lava. This explosive activity resembles the explosive phases of 1917, 1940–1941, and 1966–1967, which were characterized by mixed ashes with dominantly nephelinitic and natrocarbonatitic components. Ash and lapilli from the 2007–2008 explosive phase were collected on the slopes of OL as well as on the active cinder cone, which now occupies the entire north crater having buried completely all earlier natrocarbonatite features. The lapilli and ash samples comprise nepheline, wollastonite, combeite, Na-åkermanite, Ti-andradite, resorbed pyroxene and Fe–Ti oxides, and a Na–Ca carbonate phase with high but varying phosphorus contents which is similar, but not identical, to the common gregoryite phenocrysts in natrocarbonatite. Lapilli from the active cone best characterize the erupted material as carbonated combeite–wollastonite–melilite nephelinite. The juvenile components represent a fundamentally new magma composition for OL, containing 25–30 wt.% SiO2, with 7–11 wt.% CO2, high alkalies (Na2O 15–19%, K2O 4–5%), and trace-element signatures reminiscent of natrocarbonatite enrichments. These data define an intermediate composition between natrocarbonatite and nephelinite, with about one third natrocarbonatite and two thirds nephelinite component. The data are consistent with a model in which the carbonated silicate magma has evolved from the common combeite–wollastonite nephelinite (CWN) of OL by enrichment of CO2 and alkalies and is close to the liquid immiscible separation of natrocarbonatite from carbonated nephelinite. Material ejected in April/May 2008 indicates reversion to a more common CWN composition.  相似文献   
6.
On September 4, 2007, after 25 years of effusive natrocarbonatite eruptions, the eruptive activity of Oldoinyo Lengai (OL), N Tanzania, changed abruptly to episodic explosive eruptions. This transition was preceded by a voluminous lava eruption in March 2006, a year of quiescence, resumption of natrocarbonatite eruptions in June 2007, and a volcano-tectonic earthquake swarm in July 2007. Despite the lack of ground-based monitoring, the evolution in OL eruption dynamics is documented based on the available field observations, ASTER and MODIS satellite images, and almost-daily photos provided by local pilots. Satellite data enabled identification of a phase of voluminous lava effusion in the 2 weeks prior to the onset of explosive eruptions. After the onset, the activity varied from 100 m high ash jets to 2–15 km high violent, steady or unsteady, eruption columns dispersing ash to 100 km distance. The explosive eruptions built up a ∼400 m wide, ∼75 m high intra-crater pyroclastic cone. Time series data for eruption column height show distinct peaks at the end of September 2007 and February 2008, the latter being associated with the first pyroclastic flows to be documented at OL. Chemical analyses of the erupted products, presented in a companion paper (Keller et al. 2010), show that the 2007–2008 explosive eruptions are associated with an undersaturated carbonated silicate melt. This new phase of explosive eruptions provides constraints on the factors causing the transition from natrocarbonatite effusive eruptions to explosive eruptions of carbonated nephelinite magma, observed repetitively in the last 100 years at OL.  相似文献   
7.
Limbe town and surrounding areas, on the SE foot slopes of the active Mt Cameroon Volcano, have experienced numerous small-scale shallow landslides within the last 20 years. These resulted in the loss of ~30 lives and significant damage to farmland and properties. Landslides and their scars are identified in the field, and their geometry systematically measured to construct a landslide inventory map for the study area. Specific landslides are investigated in detail to identify site-specific controlling and triggering factors. This is to constrain key input parameters and their variability for subsequent susceptibility and risk modeling, for immediate local and regional applications in land-use planning. It will also enable a rapid exploration of remediation strategies that are currently lacking in the SW and NW regions of Cameroon. Typical slides within the study area are small-scale, shallow, translational earth, and debris slides though some rotational earth slides were also documented. The depletion zones have mean widths of 22 m ± 16.7 m and lengths of 25 ± 23 standard deviation. Estimated aerial extents of landslide scars and volume of generated debris range from 101 to 104 m2 and 2 to 5 × 104 m3, respectively. A key finding is that most slope instabilities within the study area are associated with and appear to be exacerbated by man-made factors such as excavation, anarchical construction, and deforestation of steep slopes. High intensity rainfall notably during localized storms is the principal triggering factor identified so far. The findings from this case study have relevance to understanding some key aspects of locally devastating slope instabilities that commonly occur on intensely weathered steep terrains across subtropical Africa and in the subtropics worldwide and affecting an ever denser and most vulnerable population.  相似文献   
8.
The Mt Cameroon volcano is the highest and most active volcano of the Cameroon Volcanic Line. Little geological information is available for improving the understanding of the structure of this large volcanic system and its relationship to regional tectonics. After reviewing the tectonic evolution of the region, the analysis of a Digital Elevation Model and results from a field campaign dedicated to mapping geological structures in the summit area and at the SE base of Mt Cameroon are presented. Mt Cameroon is a lava-dominated volcano with long steep (over 30°) flanks. It is elongate parallel to its well defined rift zone. The summit plateau is bordered by 10 m high cliffs formed by summit subsidence along normal faults. Geological profiles were measured along rivers cutting through a topographic step at the SE base of Mt Cameroon. This step is associated with deformed Miocene sediments from the Douala basin that are overlain by volcanic products. Weak sediments of this area are deformed by 050°–060° and 020°–030° trending asymmetrical folds verging toward the SE, and thrusts faults related to the spreading of the volcano over its mechanically weak substratum. Combined remote sensing and field observations suggest that spreading is accommodated by summit subsidence and flanks sliding. Both slow spreading movements and catastrophic collapses of the steep flanks are interpreted to result from complex interactions between the growing edifice, repeated dyke intrusions, the weak sedimentary substratum and tectonic structures.  相似文献   
9.
The largest natrocarbonatite lava flow eruption ever documented at Oldoinyo Lengai, NW Tanzania, occurred from March 25 to April 5, 2006, in two main phases. It was associated with hornito collapse, rapid extrusion of lava covering a third of the crater and emplacement of a 3-km long compound rubbly pahoehoe to blocky aa-like flow on the W flank. The eruption was followed by rapid enlargement of a pit crater. The erupted natrocarbonatite lava has high silica content (3% SiO2). The eruption chronology is reconstructed from eyewitness and news media reports and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data, which provide the most reliable evidence to constrain the eruption’s onset and variations in activity. The eruption products were mapped in the field and the total erupted lava volume estimated at 9.2 ± 3.0 × 105 m3. The event chronology and field evidence are consistent with vent construct instability causing magma mixing and rapid extrusion from shallow reservoirs. It provides new insights into and highlights the evolution of the shallow magmatic system at this unique natrocarbonatite volcano.  相似文献   
10.
With its exceptionally steep topography, wet climate, and active faulting, landslides can be expected to occur in the Rwenzori Mountains. Whether or not this region is prone to landsliding and more generally whether global landslide inventories and hazard assessments are accurate in data-poor regions such as the East African highlands are thus far unclear. In order to address these questions, a first landslide inventory based on archive information is built for the Rwenzori Mountains. In total, 48 landslide and flash flood events, or combinations of these, are found. They caused 56 fatalities and considerable damage to road infrastructure, buildings, and cropland, and rendered over 14,000 persons homeless. These numbers indicate that the Rwenzori Mountains are landslide-prone and that the impact of these events is significant. Although not based on field investigations but on archive data from media reports and laymen accounts, our approach provides a useful complement to global inventories overlooking this region and increases our understanding of the phenomenon in the Rwenzori Mountains. Considering the severe impacts of landslides, the population growth and related anthropogenic interventions, and the likelihood of more intense rainfall conditions, there is an urgent need to invest in research on disaster risk reduction strategies in this region and other similar highland areas of Africa.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号