首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  国内免费   6篇
地质学   9篇
  2012年   3篇
  2009年   3篇
  2007年   1篇
  2005年   1篇
  1996年   1篇
排序方式: 共有9条查询结果,搜索用时 46 毫秒
1
1.
The Paleo-Tethys formed a large ocean basin that existed between Laurasia and Gondwana during Late Paleozoic to Early Mesozoic times. It opened in the Early Devonian by the rifting of Gondwanaland and closed at around latest Triassic time by the collision of the Cimmerian continent to Laurasia (Metcalfe, 1999). We reconstructed opening and closing process of the Paleo-Tethys in Northern Thailand.  相似文献   
2.
The Inthanon Zone of Northern Thailand, origi-nally proposed by Barr and Macdonald (1991), is characterized by the occurrence of Paleo-Tethyan pe-lagic sediments including Carboniferous–Permian seamount-type carbonate associated with oceanic ba-saltic rocks and Middle Devonian–Middle Triassic radiolarian chert (Ueno, 1999; Ueno and Hisada, 2001; Ueno and Charoentitirat, 2011). These pelagic rocks have been mainly studied from the viewpoint of bio-stratigraphy to clarify the duration of their deposition. These studies concluded the Paleo-Tethys to be a vast ocean basin once existed between the Indochina and Sibumasu continental blocks during Devo-nian–Triassic times.  相似文献   
3.
Metapelites, migmatites and granites from the c. 2 Ga Mahalapye Complex have been studied for determining the PT–fluid influence on mineral assemblages and local equilibrium compositions in the rocks from the extreme southwestern part of the Central Zone of the Limpopo high‐grade terrane in Botswana. It was found that fluid infiltration played a leading role in the formation of the rocks. This conclusion is based on both well‐developed textures inferred to record metasomatic reactions, such as Bt ? And + Qtz + (K2O) and Bt ± Qtz ? Sil + Kfs + Ms ± Pl, and zonation of Ms | Bt + Qtz | And + Qtz and Grt | Crd | Pl | Kfs + Qtz reflecting a perfect mobility (Korzhinskii terminology) of some chemical components. The conclusion is also supported by the results of a fluid inclusion study. CO2 and H2O ( = 0.6) are the major components of the fluid. The fluid has been trapped synchronously along the retrograde PT path. The PT path was derived using mineral thermobarometry and a combination of mineral thermometry and fluid inclusion density data. The Mahalapye Complex experienced low‐pressure granulite facies metamorphism with a retrograde evolution from 770 °C and 5.5 kbar to 560 °C and 2 kbar, presumably at c. 2 Ga.  相似文献   
4.
Phase analysis in the model K2O-poor aluminous rock system (FMASH) illustrates the following sequence of reactions during retrograde metamorphism in the Botswanan Limpopo Central Zone:
Opx+Sil+Qtz=Crd ,
Opx+Sil=Spr+Crd ,
Grt+Qtz=Opx+Crd ;
Opx+Crd+W=Ged+Qtz ,
Grt+Opx+Crd+W=Ged ;
and
Grt+Qtz+W=Ged+Crd .
A quantitative petrogenetic grid with phase relations shows that sapphirine results from nearly isothermal decompression in the quartz-undersaturated portions of the grid, and that gedrite formation by reactions (4)–(6) records isobaric cooling from high temperature ( c . 800°  C) after the decompression. Conditions for hydration in the western part of the area were 700–800°  C and c . 6  kbar, based on microthermometric data and the available garnet–cordierite geothermometer. On the basis of these conditions and predicted thermodynamic properties of gedrite, phase relations in T–X Mg space were constructed to investigate the isobaric cooling event. The results are in good agreement with the hydration P–T  path. Further, the T–X Mg topologies show that hydration of orthopyroxene in the central part of the area (reaction 4) occurred at about 800°  C and c . 5  kbar. Therefore, we conclude that the Botswanan Limpopo Central Zone has suffered isothermal decompression, similar to the Central Zone in South Africa and Zimbabwe, followed by isobaric cooling. The isobaric cooling event in the western (at c . 6  kbar) and central (at c . 5  kbar) parts of the area commenced at nearly the same temperature ( c . 800°  C), and appear to be consistent with a tectonic model that involved westward movement (thrusting) of the Central Zone.  相似文献   
5.
Provenance and tectonic history of the Jurassic accretionary complex, Mino terrane, located in the Inner Zone of south‐west Japan, were studied using sandstone framework composition and mudrock geochemistry. Modal analysis of sandstones shows that the tectonic setting of the source area for the studied Mino terrane clastic rocks was uplifted basement, largely dominated by high‐grade metamorphic terrain composed of quartz and feldspar, especially plagioclase. The textural and mineralogical immaturity, extent of alkali and alkaline earth element leaching, low chemical index of alteration values and depleted rare earth element (REE) contents suggest rapid uplift and erosion within the source terrain and a relatively weak weathering intensity. Factor analysis revealed that grain‐size effects governed compositional heterogeneity in the studied sediments. Provenance of the sediments is interpreted as being plagioclase‐enriched felsic basement rock, such as granodiorite, within a continental margin and evolved arc tectonic setting rather than active volcanic arc. Lack of a contribution from active volcanic arcs may have resulted from the cessation of volcanism during the reorganization of the subducting plate system and/or erosion of arc volcanics and exposure of basement. Considering the previous studies on palaeogeography and palaeocurrent reconstruction, the north‐eastern part of the Yeongnam massif in the Korean Peninsula is interpreted as the most probable source area for the studied turbidites. The results of mixing calculation for Mino terrane sediments suggest that Precambrian leucocratic granite and the basement rock of the Cretaceous Gyeongsang Basin shed large amounts of sediments to the Mino trench, whilst Precambrian granitic gneiss and the Triassic pluton supplied lesser amounts. The results of this study reveal that, although active subduction–accretion processes were occurring, the Mino trench was bordered by continental basement rocks. This knowledge contributes to enhanced understanding of the Jurassic palaeogeography of the east Asia continental margin.  相似文献   
6.
The accretionary complex related to the Pa-leo-Tethys subduction was developed along western margin of the Indochina Block in northern Thailand. The provenance, source rock compositions, and sedi-ment supply system of the accretionary complex were reconstructed based on the petrography and geochem-istry of clastic rocks, U-Pb dating of detrital zircons.  相似文献   
7.
The Phu Kradung Formation of the Mesozoic Khorat Group is deposited by meandering river system. Floodplain deposits in the Nong Bua Lamphu section, northeastern Thailand contain paleosols with abundant calcretes. Calcretes occur within about 60 horizons in the studied section. Occurrences of calcretes are related with traces of life, such as roots and burrows. Microstructures of calcretes are mixture of biogenic and non-biogenic origin. It is suggested that the calcrete formation in the Phu Kradung Formation was affected by abundant biological activity.  相似文献   
8.
Zagros orogen extends from the Turkish-Iranian border to NW,to the Makran area in SE.According to Geological Survey of Iran 100,000 series "Sureyan", "Saadatshahr","Abadeh-E-Tashk" and "Arsenjan",the Zagros orogen comprises the following sub-parallel tectonostratigraphic domains,from SW to NE:the  相似文献   
9.
The conglomerate including quartzite clasts occurs at various places in Japan. In this paper, the Muro and Nichinan clasts of the Shimanto belt were examined using optical and cathodoluminescence microscopes. Based on the paleogeography of Paleo-Japan before the opening of the Sea of Japan, it is concluded that these quartzite clasts were probably derived from the edge of East Asian continent.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号